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Chapter 1

Introduction

Protecting means of communication has been a human need since ancient
times. With the advancement of public-key cryptography in the 1970s [DH76],
secure communication without a shared secret key became feasible for the
first time. With the rise of the internet, this technology became widespread
and the vast majority of individuals, corporations, and governments rely on
public-key cryptography daily.

At the core of any secure communication, we are interested in protecting
the confidentiality, integrity, and authenticity of data. Confidentiality refers
to the inability of unauthorized parties to read the contents of the exchanged
messages. The integrity of messages implies that the receiver can be sure that
the message has not been manipulated by a third party. Lastly, authenticity
guarantees that a message was transmitted by the claimed sender. Cryp-
tography offers a way to guarantee these security goals using cryptographic
schemes. Most commonly, we use encryption for achieving confidentiality,
and digital signatures or message-authentication codes (MAC) for achieving
integrity and authenticity. We distinguish two categories of cryptographic
schemes: symmetric (or secret-key) cryptography and asymmetric (or public-
key) schemes. While secret-key cryptography requires both the sender and
receiver to share a cryptographic secret (e.g., a long random password) that
must not be known by any adversary, public-key cryptography works funda-
mentally different: One party generates a key pair consisting of a secret key
and a public key. The public key is shared with the world (e.g., posted on a
website), while the secret key must remain private. In the case of public-key
encryption (PKE), it then suffices to be in possession of the public key to
encrypt messages which can then only be decrypted by the owner of the
secret key. For digital signatures, a message is signed using the secret key
and the signature can be verified using the corresponding public key.

However, public-key cryptography is much more costly than secret-key
cryptography both in terms of computation time and data that needs to
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be transmitted. Hence, it is customary to combine public-key cryptography
with a secret-key primitive, i.e., encrypt a small symmetric key (e.g., 256
bit) using PKE which is then used to key a symmetric cipher. A public-key
scheme that can only be used for encrypting such a short key is referred to as
a key-encapsulation mechanism (KEM). A KEM, however, is more general
than a fixed-size PKE as it is not necessarily the case that the key can be
chosen. It can also be derived as a part of the KEM.

Unfortunately, the advancement of quantum computers threatens the
security of public-key cryptography. This is mostly due to Shor’s algo-
rithm [Sho94] which was published in 1994. Shor’s algorithm allows to fac-
tor a large integer into its prime factors on a quantum computer in polyno-
mial time while the best-known classical algorithms require super-polynomial
time. Also, Shor’s algorithm allows computing discrete logarithms in poly-
nomial time. This has devastating consequences as common public-key
schemes rely on the hardness of factoring or computing discrete logarithms:
RSA [RSA78] relies on factoring, DH [DH76] relies on the discrete-logarithm
problem (DLP), elliptic-curve cryptography (ECC) [Mil85] relies on the
elliptic-curve DLP. Once a large-scale quantum computer is available, cryp-
tographic schemes building upon these problems can be broken and it is
possible to compute the secret keys from the public keys. Hence, all en-
crypted messages can be decrypted, and all digital signatures are useless as
one can simply forge signatures. Even worse, it is possible to record en-
crypted messages now and decrypt them using a future quantum computer.
Even though large-scale quantum computers are not existing today, recent
progress in their development suggests that they might exist in the next
decades [MP21].

This motivates the need to migrate away from these schemes based on
factoring or the DLP to schemes that resist attacks by both classical com-
puters and also quantum computers. This type of cryptography is called
post-quantum cryptography and started attracting interest in the crypto-
graphic research community in the 2000s which resulted in proposals over
the last two decades. Cryptography that cannot resist quantum attacks is
called classical cryptography in the following. Note that the use of post-
quantum cryptography does not require a quantum computer, i.e., it can be
deployed on classical computers.

Aside from Shor’s algorithm, there is one other noteworthy quantum
algorithm that needs to be taken into account: Grover’s algorithm [Gro96].
It allows searching a set of size n in

√
n steps, a task that would require

n steps on a classical computer. This also applies to cryptography: It can
be used to search a cryptographic key by enumerating all possible keys (i.e.,
brute-forcing). This mostly impacts symmetric cryptography as the best-
known attacks are often close to brute-forcing. Luckily, this square-root
speed-up can be countered by doubling the key sizes. For example, one could
use a key length of 256 bits rather than 128 bits when using the Advanced
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family KEM/PKE signature
Code 18 3
Hash 0 2
Isogeny 1 0
Lattice 21 5
MQ 3 7
Other 6 3
Total 49 20

Table 1.1: 69 complete and proper submission to the NISTPQC [NIS16]

Encryption Standard (AES) [DR02] to achieve comparable post-quantum
security. Hence, the term post-quantum cryptography commonly refers to
quantum-resistant public-key cryptography.

Due to the emerging threat of quantum computers, the US National Insti-
tute for Standards and Technology (NIST) has announced in 2016 [NIS16]
that it plans to replace their standards based on the DLP and factoring
with post-quantum alternatives. Specifically, this affects their standards for
key establishment (NISTSP800-56 [Nat18, Nat19a]), and digital signatures
(FIPS186-4 [Nat13]). The replacements are to be determined in a public
competition for which a call for proposals was published in 2016 with a dead-
line for submissions in late 2017. We refer to the competition as NISTPQC
in the following. Since key-establishment protocols can be built from ei-
ther public-key encryption algorithms or key-encapsulation algorithms, and,
hence, NIST decided to accept submissions for both. In contrast to the pre-
vious AES and SHA-3 competitions, NIST does not plan to select a single
winner for each category, but expects to select multiple schemes. Therefore,
it is sometimes referred to as the NISTPQC project (or not-a-competition)
rather than a competition. Similar to previous NIST competitions, NIST
aims to standardize multiple parameter sets providing different levels of se-
curity. To enable this, NIST defined security levels one to five providing at
least the classical and post-quantum security as AES128, SHA256, AES192,
SHA384, and AES256, respectively. Most submissions only provide parame-
ter sets that target security levels one, three, and five. NISTPQC consists of
multiple rounds of evaluation and at the end of each round, NIST selects a
subset of proposals for the next round and publishes a report justifying their
selection. NIST received 82 submissions of which it deemed 69 as complete
and proper [NIS16]. Among those submissions were all five major families of
schemes that are conjectured to resist quantum attacks: code-based cryptog-
raphy, hash-based cryptography, isogeny-based cryptography, lattice-based
cryptography, and multivariate-based cryptography. See Table 1.1 for an
overview distribution of the submissions. While they all come with their
advantages and disadvantages, all have promising instantiations which may
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KEM/PKE signature
Code BIKE, Classic McEliece,

HQC, LEDAcrypt, NTS-
KEM, ROLLO, RQC

–

Hash – SPHINCS+

Isogeny SIKE –
Lattice FrodoKEM, Kyber, LAC,

NewHope, NTRU, NTRU
Prime, Round5, Saber,
Three Bears

Dilithium, Falcon, qTesla

MQ – GeMSS, LUOV, MQDSS,
Rainbow

Other – Picnic

Table 1.2: Second-round and third-round NISTPQC candidates. Third
round candidates are bold. Third round finalists are additionally
underlined.

be useful for certain use cases. The code-based schemes in the NIST com-
petition are mostly key-establishment schemes. They are characterized by
large public keys and small ciphertexts. Hash-based cryptography can only
be used to construct digital signatures, but not key establishment. It uses
small public keys but results in large signatures. Isogeny-based cryptography
only has a single candidate in the NIST competition: SIKE [JAC+17], which
is a key-encapsulation mechanism. It has small public keys and ciphertexts
but is significantly slower than other schemes. Lattice-based cryptography is
the most prominent and arguably the promising family as it has reasonable
ciphertext, signature, and public-key sizes, and also has a good performance.
Last but not least, there are schemes based on the hardness of solving mul-
tivariate quadratic (MQ) equations. In the NIST competition, MQ schemes
are mostly signature schemes. They are characterized by small signatures,
but large public keys. There were also nine submissions that do not fit any
of these five families. Sadly, none of the submissions comes without any dis-
advantages when compared to classical schemes like ECC: They either have
much larger keys, larger ciphertexts, larger signatures, or are much slower.

In 2019, NIST published their first-round report [Nat19b] and announced
the start of a second round with 26 candidate schemes advancing of which 17
are key-establishment schemes and nine are signature schemes. The second-
round candidates are shown in Table 1.2. It is notable that all code-based
signatures and all multivariate key-establishment schemes have been elimi-
nated. Half of the candidates are based on lattices and still represent the
most popular family of schemes. Note that only one scheme in the other
family has survived the first round: Picnic [ZCD+17]. It is built using sym-
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metric cryptography and zero-knowledge proofs. All other schemes have
either been broken or been eliminated due to a lack of confidence in their
security.

Another year later in mid-2020, NIST announced the third round [Nat20]
with 15 schemes advancing. NIST distinguishes between seven finalists and
eight alternate schemes. NIST states that finalists are likely ready for stan-
dardization at the end of the third round in case they are selected, while
alternative schemes will require more research and further rounds of evalua-
tion. It also states that due to similarities of the proposals it will standardize
at most one of Kyber, NTRU, and Saber and will standardize at most one of
Dilithium or Falcon, but not both.

NIST states that besides the security of the schemes and their key and
message sizes, an important factor for selecting the future PQC standard
is good performance [Nat19b]. Especially beyond the first round, perfor-
mance is one of the most crucial factors unless significant cryptographic
advances threaten the security of some schemes. It is essential that the se-
lected schemes perform well on a wide range of platforms from smart cards
and microcontrollers to high-end servers in a data center. To enable fair com-
parisons of implementations, NIST initially recommended that submission
teams focus on 64-bit Intel processors.1 At the end of the first round, NIST
announced that in addition to Intel processors, it would like the community
to focus on Arm Cortex-M4 microcontrollers and Artix-7 FPGAs.2

In this thesis, I study how to implement selected NISTPQC candidates
on the Arm Cortex-M4 to achieve the best performance. Compared to Intel
processors, working on microcontrollers presents some challenges for PQC:

• Most importantly, memory is much more limited on microcontrollers,
often not exceeding 100 kB. Many NISTPQC submissions require sig-
nificant changes to the implementations to even be functional on such
devices. Some schemes even have keys that are larger than the avail-
able memory which often hinders their use.

• The instruction sets of microcontrollers are much more limited than
those of high-end Intel CPUs. While Intel implementations often ex-
ploit data-level parallelism using vector instructions, microcontrollers
offer no or very limited ways to exploit data-level parallelism.

• Cryptographic hardware accelerators (e.g., for AES or SHA-2) are
much less common in microcontrollers. While virtually all high-end
processors now have specialized instructions for symmetric cryptogra-
phy, these are usually non-existent on small devices. This results in

1https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-

cryptography-standardization/evaluation-process
2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cJxMq0_90gU/m/

qbGEs3TXGwAJ
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a big slow-down for PQC schemes relying on symmetric cryptography
as a building block which is the case for most schemes.

• Microcontrollers run at a much lower frequency than high-end CPUs,
which results in some schemes taking seconds or even minutes. For
many use cases, this can be prohibitively slow.

• Energy consumption is a much larger concern for microcontrollers as
they are often embedded into battery-powered systems.

• Library support is much more limited for microcontrollers. Even if
libraries are available, they are often not heavily optimized for the
target architecture. This usually requires replacing all libraries with
custom optimized code.

Overarching of the work presented in this thesis is the pqm4 [KPR+]
project which was started in early 2018 by Rijneveld, Stoffelen, Schwabe, and
myself. pqm4 is a unified testing and benchmarking framework for NISTPQC
schemes on the Arm Cortex-M4. Initially, the goal was to make as many
schemes as possible work while making sure that the implementations are
compatible with the reference implementations running on a high-end CPU.
The unified benchmarking framework was used by many optimization papers
to obtain fair performance metrics including speed, memory consumption,
and code size. To ensure consistency and accessibility, pqm4 collects all
optimized (open-source) implementations and posts the performance bench-
marks online.

Research Data Management. This thesis research has been carried out
under the research data management policy of the Institute for Computing
and Information Science of Radboud University, The Netherlands. The re-
search datasets produced during this PhD research packaged into a single
archive are available at https://doi.org/10.5281/zenodo.5555735. For
more details, see Appendix A.

1.1 Contributions

The content in the main body of this thesis is the result of collaboration
and publication with multiple co-authors. As usual in the field of cryp-
tography, all publications list authors in alphabetical order as it is usually
not possible to identify one main author. Nonetheless, my contributions to
these publications vary and the following section outline which parts are my
contributions.
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Part I: Multiplication for NTT-friendly Rings

In the first content part of this thesis, we study implementations of post-
quantum KEMs and signature schemes which have been specifically designed
to benefit from using number-theoretic transforms (NTTs) for polynomial
arithmetic. The part is based on two publications published at Africacrypt
2019 and TCHES 2021.

Leon Botros, Matthias J. Kannwischer, and Peter Schwabe.
Memory-efficient high-speed implementation of Kyber on Cortex-
M4. In Progress in Cryptology – Africacrypt 2019, LNCS, pages
209–228. Springer, 2019. https://eprint.iacr.org/2019/489

This work, contained in Chapter 3, studies Cortex-M4 implementations
of the Kyber KEM both with and without the changes that have been intro-
duced in the second round of the NIST competition. The paper discusses
implementations optimized for speed and for stack consumption. I wrote all
the assembly code involved in the polynomial arithmetic. The stack opti-
mized implementations are based on a Cortex-M0 implementation by Leon
Botros, that I ported to the M4 implementation together with him. The
writing of the paper was a joint effort of all authors.

Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan
Sprenkels. Compact Dilithium implementations on Cortex-M3
and Cortex-M4. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2021(1):1–24, 2020. https://eprint.

iacr.org/2020/1278

The second publication is presented in Chapter 4. It presents new speed-
records for the signature scheme Dilithium on the Cortex-M4, and addition-
ally presents the first implementations for Dilithium, Kyber, and NewHope
on the Cortex-M3. We provide several time-memory trade-offs for the signa-
ture generation of Dilithium. The Cortex-M3 implementation of the Dilithium
NTT is the core contribution to which all authors contributed equally. Addi-
tionally, I wrote the faster Cortex-M4 NTT as well as the Cortex-M3 imple-
mentations of Kyber and NewHope. Paper writing was distributed equally
between authors.

Part II: Multiplication for NTT-unfriendly Rings

While some schemes are specifically designed to benefit from NTT multi-
plication, other lattice-based schemes are built using different polynomial
rings which allow various ways of implementing polynomial arithmetic. The
most prominent schemes in that realm are Saber and NTRU which to date
are still candidates for the NISTPQC standardization. Implementations of
those were studied in two papers published at ACNS 2019 and TCHES 2021.
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Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe.
Faster multiplication in Z2m[x] on Cortex-M4 to speed up NIST
PQC candidates. In Applied Cryptography and Network Security
– ACNS 2019, LNCS, pages 281–301. Springer, 2019. https:

//eprint.iacr.org/2018/1018

Chapter 5 covers the earlier work which describes how five first-round
candidates (including Saber and NTRU) relying on polynomial multiplication
in Z2m[x] can be efficiently implemented on the Cortex-M4 using Karatsuba
multiplication and Toom–Cook multiplication. As the polynomial rings used
in these five schemes vary significantly, the main contribution of this work
is a code generator supporting arbitrary polynomial degrees and allowing
a number of different combination of multiplication methods. The code
generation was written in close collaboration with Joost Rijneveld with the
help of the blackboard in our beautiful corner office in Nijmegen. The paper
was written by all three authors. We have received the ACNS 2019 best
student paper award for this paper.

Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwis-
cher, Gregor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT
multiplication for NTT-unfriendly rings – new speed records for
Saber and NTRU on Cortex-M4 and AVX2. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(2):159–
188, 2021. https://eprint.iacr.org/2020/1397

The second publication presents how polynomial multiplication can be
implemented even more efficiently by using the NTT. The details are cov-
ered in Chapter 6. We showcase the superiority of NTT implementations
compared to Toom–Cook and Karatsuba multiplication for the three KEMs
NTRU, Saber, and LAC and target the Cortex-M4 and AVX2. While the
former two are currently still under consideration by NIST, the later scheme
has been chosen as a winner of the Chinese Association for Cryptologic Re-
search (CACR) post-quantum competition. The Cortex-M4 code is a result
of a summer internship by Chi-Ming Marvin Chung, Vincent Hwang, and
Cheng-Jhih Shih at Academia Sinica, Taiwan that was supervised by Bo-Yin
Yang and me. Vincent Hwang and I got these implementations into shape
for publication. The AVX2 implementations are by Gregor Seiler. The paper
was written by Vincent Hwang, Gregor Seiler, Bo-Yin Yang, and me. We
have received the TCHES 2021 best artifact award for the code submitted
alongside this paper.

Other publications

I have chosen not to include various other publications in this thesis, as it
allows me to spend more words on connecting the selected work and elaborate
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on the common preliminaries in greater depth. The peer-reviewed academic
publications not appearing in this thesis in reverse chronological order are:

• Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin
Yang, and Shang-Yi Yang. Neon NTT: Faster Dilithium, Kyber, and
Saber on Cortex-A72 and Apple M1. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2022(1):221–244, 2021.
https://eprint.iacr.org/2021/986

• Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang,
Matthias J. Kannwischer, and Bo-Yin Yang. Multi-moduli NTTs for
Saber on Cortex-M3 and Cortex-M4. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2022(1):127–151, 2021.
https://eprint.iacr.org/2021/995

• Ruben Gonzalez, Andreas Hülsing, Matthias J. Kannwischer, Juliane
Krämer, Tanja Lange, Marc Stöttinger, Elisabeth Waitz, Thom Wig-
gers, and Bo-Yin Yang. Verifying post-quantum signatures in 8 kB
of RAM. In Post-Quantum Cryptography – PQCrypto 2021, LNCS,
pages 215–233. Springer, 2021. https://eprint.iacr.org/2021/662

• Tung Chou, Matthias J. Kannwischer, and Bo-Yin Yang. Rainbow
on Cortex-M4. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2021(4):650–675, 2021. https://eprint.iacr.

org/2021/532

• Fabio Campos, Matthias J. Kannwischer, Michael Meyer, Hiroshi
Onuki, and Marc Stöttinger. Trouble at the CSIDH: Protecting CSIDH
with dummy-operations against fault injection attacks. In Workshop
on Fault Detection and Tolerance in Cryptography, pages 57–65, 2020.
https://eprint.iacr.org/2020/1005

• Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace
attacks on Keccak. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(3):243–268, 2021. https://eprint.iacr.
org/2020/371

• Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane
Krämer, and Johannes Buchmann. Differential power analysis of
XMSS and SPHINCS. In Constructive Side-Channel Analysis and
Secure Design – COSADE 2018, pages 168–188. Springer, 2018.
https://eprint.iacr.org/2018/673

Beyond these formally published publications, the following papers have
been accepted to conferences and workshops without formal proceedings:

• Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. pqm4: Testing and benchmarking NISTPQC on ARM
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Cortex-M4. In Second NIST PQC Standardization Conference, 2019.
https://eprint.iacr.org/2019/844

• Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and An-
drew McLauchlan. Practical fault injection attacks on SPHINCS. In
Kangacrypt, 2018. https://eprint.iacr.org/2018/674

In addition to these papers, I am involved in the NISTPQC signature
finalist Rainbow:

• Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques
Patarin, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang. Rain-
bow: Algorithm specification and supporting documentation. Sub-
mission to the NIST Post-Quantum Cryptography Standardization
Project [NIS16], 2019. https://www.pqcrainbow.org/
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Chapter 2

Preliminaries

This chapter presents the preliminaries that are common among the fol-
lowing chapters of this thesis. Section 2.1 introduces the basic terminology
of key-establishment and digital signature schemes. Section 2.2 presents
polynomial-multiplication techniques with a focus on fast software imple-
mentations. Section 2.3 introduces algorithms for fast modular arithmetic,
which is used as a building block of polynomial multiplication. Lastly, Sec-
tion 2.4 presents the primary optimization platforms throughout this thesis:
the Arm Cortex-M4 and Arm Cortex-M3.

2.1 Cryptographic Schemes

The NISTPQC competition seeks post-quantum replacements for the NIST
standards for key-establishment schemes and digital signature schemes. The
following sections introduce the terminology that is commonly used when
describing those schemes. It discusses the security properties that are gen-
erally desired for such schemes. While these definitions are not limited to
post-quantum cryptography, a scheme is called post-quantum in case the
security properties still hold in case the adversary has a large-scale quantum
computer.

2.1.1 Key-Establishment Schemes

The objective of key establishment is for two (or more) parties to agree on a
shared secret key. Cryptographically this can be achieved in multiple differ-
ent ways including either a PKE, a KEM, or a non-interactive key exchange
(NIKE). Up until recently, post-quantum schemes were limited to either
PKE or KEM. In 2018, after the deadline of the NIST project has passed,
also post-quantum NIKE based on isogenies has been proposed [CLM+18].
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However, as this came long after NIST called for proposals, NIST only al-
lowed PKE and KEM submissions. As shown in the following, it is easy to
construct a KEM from a PKE and vice versa.

A PKE scheme consists of three algorithms: KeyGen, Encrypt, and
Decrypt:

KeyGen() takes no inputs and outputs a key pair consisting of a public key
pk and a secret key sk.

Encrypt(pk, m) takes as inputs a public key pk and a message m, which is
usually a bitstring. It outputs the encrypted message as ciphertext c.

Decrypt(sk, c) takes as inputs a secret key sk and a ciphertext c. It
outputs the decrypted message m’.

A PKE scheme is correct if Decrypt(sk,Encrypt(pk,m)) = m for any
key pair (pk, sk) produced by KeyGen() and any message m. It is called
a deterministic PKE (DPKE) if Encrypt outputs the same ciphertext if
called with the same inputs multiple times. Any non-deterministic PKE
can be turned into a DPKE by slightly changing the API and making the
randomness an explicit argument, e.g., by adding an argument seed that is
used to derive all randomness pseudo-randomly.

A key-encapsulation mechanism (KEM) consists of three algorithms:
KeyGen, Encaps, and Decaps:

KeyGen() takes no inputs and outputs a key pair consisting of a public key
pk and a secret key sk.

Encaps(pk) takes as input a public key pk and returns a ciphertext c and
a session key ss.

Decaps(sk, c) takes as input a secret key sk and a ciphertext c. It outputs
a session key ss’.

A KEM is correct if given c,ss ← Encaps(pk), Decaps(sk,c) = ss for
any key pair (pk, sk) produced by KeyGen(). To formalize the security of
cryptographic schemes one usually describes the capabilities of the most
powerful attack that a cryptographic scheme can resist. The most com-
mon security notion of PKE schemes and KEMs is indistinguishability under
chosen-plaintext attacks (IND-CPA; CPA for short) and indistinguishabil-
ity under chosen-ciphertext attacks (IND-CCA; CCA for short). Informally,
these notations can be explained as follows. Indistinguishability refers to the
inability of an attacker to reliably distinguish which of two ciphertexts cor-
responds to a given message. In the CPA setting, the adversary can encrypt
as many messages as needed to obtain information from the ciphertexts that
help to distinguish the given setting. This implies that a DPKE can never
be CPA secure as the adversary can simply encrypt the given message. In
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the CCA setting, the adversary is more powerful: He can actively choose
ciphertexts (different from the target ciphertexts) and ask a decryption or-
acle to decrypt those. The information obtained from those queries must
not help him to distinguish the ciphertexts. CPA attacks are also called
passive attacks, while CCA attacks are called active attacks referring to the
adversary actively tampering with some ciphertexts to obtain information
about the secret key.

In practice, in most settings, the desired security notion is CCA security
as it can often not be guaranteed that the adversary is unable to mount
active attacks. For example, consider a public web server responding to
requests. An adversary can send crafted ciphertexts to the web server that
it will decrypt; the behavior of the web server often can be used to obtain
some information about the secret key involved. Hence, it is usually only
acceptable to use a CPA-secure scheme if each public key is only used once.

Luckily, there exist constructions that transform CPA-secure schemes
into CCA-secure schemes. The most common one is the Fujisaki–Okamoto
(FO) [FO99] transform which allows transforming a CPA-secure DPKE into
a CCA-secure KEM. This approach is used by a large number of NISTPQC
schemes including most of the ones covered in this thesis. Informally, the
FO transform allows the decrypting party to verify that the ciphertext was
honestly generated or if it was crafted. In case a dishonest ciphertext is
detected, a random key is returned such that no information about the secret
key is revealed. For a more formal description of the construction refer to
[HHK17].

2.1.2 Digital Signature Schemes

A digital signature scheme consists of three algorithms: KeyGen, Sign, and
Open:

KeyGen() takes no inputs and outputs a key pair consisting of a public key
pk and a secret key sk.

Sign(sk, m) takes as inputs a secret key sk and a message m which is usu-
ally a bitstring of arbitrary length. It outputs a signed message sm

commonly consisting of the concatenation of the message itself and a
signature.

Open(pk, sm) takes as inputs a public key pk and a signed message sm. If
the signature is valid under pk, it returns the message m. Otherwise,
it returns an error.

A digital signature scheme is called correct if Open(pk,Sign(sk,m)) = m
for any (pk, sk) produced by KeyGen() and any message m. There is an
alternative definition of signature schemes where Sign returns a signature
rather than a signed message, which is then verified using an algorithm
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Verify. In that case, it is left to the user of the cryptographic scheme to
decide what to do in case a signature is invalid. This can have catastrophic
consequences as users (e.g., implementers using a cryptographic library) will
often ignore such failure and proceed as usual. In the vast majority of cases,
the sensible action to do is to discard the message and trigger some kind
of error handling as the message cannot be trusted. This is the behavior
enforced by the Sign/Open definition of signature schemes. NIST is following
the Sign/Open definitions and requires the submitted software to adhere to
the APIs reflecting them.

For a digital signature scheme to be secure, we require that it is impos-
sible to produce a valid signed message sm without the knowledge of the
secret key sk. The most common security notion for signature schemes is
existential unforgeability under chosen message attacks (EU-CMA). Infor-
mally, it implies that an adversary is incapable to produce a signature for
any message (existential forgery) even if he is allowed to obtain signatures
for other messages, i.e., has access to a signing oracle.

2.2 Polynomial Multiplication for Computer
Scientists

For thousands of years, humankind has studied how to efficiently multiply,
either in anticipation of intriguing applications like cryptography or for its
mere mathematical beauty. Hence, we can now choose from a plethora of
multiplication methods that may or may not be useful for the problem at
hand. Polynomial multiplication is a core building block for cryptography
of all kinds. In particular, the vast majority of post-quantum schemes use
polynomial multiplication. A closely related task is the multiplication of
large integers which is used in yet another large number of cryptographic
schemes.

Even more, multiplication methods are constantly adapted and optimized
for a certain instance, such that any given implementation of polynomial
multiplication contains dozens of tricks that have been discovered in decades
or even centuries of research. This makes it incredibly hard to understand
a given implementation without reading a huge number of papers. This is
amplified by the fact that most tricks are simply part of all modern imple-
mentations, but rarely fully explained or attributed to the corresponding
publications.

To date, I am not aware of any good comprehensive introduction to
all polynomial multiplication methods used in state-of-the-art implementa-
tions of post-quantum cryptographic schemes. The renowned work by Bern-
stein [Ber01] is an excellent survey of numerous tricks and concisely presents
them for a reader with experience in the underlying mathematical concepts.
However, coming from a computer science background and lacking the nec-
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essary mathematical background, it appears to be hardly decipherable. As
I struggled for many years to conceive the tricks and I have seen many stu-
dents struggle with it in the same way, I have decided to try to bridge this
gap and write an introduction to polynomial multiplication for computer
scientists.

In the following sections, I present every single way of multiplying poly-
nomials that I have encountered in actual implementations of post-quantum
cryptographic schemes over the years. Alongside the descriptions in this
thesis, each section comes with sample implementations in Python and C.
I aimed for this chapter to be brief, self-contained, and easy to follow. In
parts, I skip over a lot background and formal definitions and instead provide
examples that I hope provide a good intuition and serve as a starting point.
For a more formal treatment, I recommend reading [vzGG13], [Nus82], and
of course [Ber01].

The code is available at https://github.com/mkannwischer/polymul

and can be freely used under a CC0 copyright waiver. All source code related
to this thesis is also available in a single archive. See Appendix A.

Notation. Let Z be the ring of integers, and Zq be the integer ring containing
{0, ..., q − 1} with q being a positive integer and arithmetic being performed
modulo q. We write Z[x] to denote the polynomial ring in the variable x with
integer coefficients, and Zq[x] to denote the polynomial ring with coefficients
in Zq. Given a polynomial a in some polynomial ring, we write ai to denote
the coefficient corresponding to xi, i.e, a = ∑

n−1
i=0 aix

i. As these polynomial
rings have an infinite number of elements, they are not particularly useful for
cryptography. Hence, one uses a finite polynomial ring instead by computing
modulo a certain polynomial f(x) with degree n, such that polynomials
remain at degree at most n − 1, i.e., n coefficients. We write Zq[x]/(f(x))
to denote the ring with all operations modulo f(x) and q. Sometimes we
require to split a polynomial a into multiple parts by setting y = xk for some

k < n. To denote the part i, we write a(i), such that a = ∑
⌈n/k⌉
i=0 a(i)yi.

Example 1: Consider the polynomial ring Z2[x]/(x
2 + 1). This poly-

nomial ring has four elements: {0,1, x, x + 1}. We can now multiply two
polynomials, e.g., x ⋅ (x + 1) = x2 + x ≡ x + 1 (mod q, x2 + 1) as x2 ≡ −1
(mod q, x2 + 1).

For cryptographic purposes, one uses polynomial rings with many more
elements. In the following we are mostly considering rings that are used in
cryptographic schemes based upon structured lattices, but all of the algo-
rithms find application far beyond. A common choice for q is either a power
of two or a prime, commonly below 32 or 16 bits, such that one or two coef-
ficients fit neatly into a processor word on all popular platforms. A common
choice for n is between 256 and 1024. For some polynomial multiplication
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algorithms, n is ideally a power of two as well, but that is not always the
case in cryptographic schemes. A very common choice for f(x) is xn + 1 or
xn − 1 as the reduction is simple to implement and can often be done on the
fly.

Application: Kyber [ABD+17] uses the ring Z3329[x]/(x
256 + 1),

Saber [DKRV17] uses Z8192[x]/(x
256 + 1), NTRU [ZCH+19] uses

(among others) Z8192[x]/(x
701 − 1), and Dilithium [LDK+17] uses

Z8380417[x]/(x
256 + 1).

Coefficient Multiplication. Every polynomial-multiplication algorithm
requires multiplying elements in Zq. Since q is chosen such that coeffi-
cients fit into registers, multiplication can in most cases use the available
multiplication instructions which multiply mod 2k with k ∈ 16,32,64. If q
is a power of two, one can simply use the instruction 2k > q and obtain the
standard representative (0, ..., q − 1) using a logical AND with q − 1. For in-
termediate values, the standard representative is usually not required, and
one can omit the reductions. However, if q is not a power of two, the mul-
tiplication needs to be performed mod 2k > q2 and needs to be followed by
an explicit reduction modulo q to bring coefficients back to a single word.
Furthermore, additions and subtractions of coefficients cause them to grow
and one needs to be careful to reduce them before they overflow the word
size. For reductions after multiplications, one commonly uses Montgomery
reductions [Mon85], while for reductions after additions, one can use Mont-
gomery reductions, Barrett reductions [Bar86], or specialized reductions for
special primes, e.g., Solinas primes [Sol99]. For describing the polynomial-
multiplication algorithms, we assume that modular multiplications in Zq

can be performed efficiently and cover the concrete algorithms separately in
Section 2.3.

Convolution. In literature about polynomial multiplication one often also
reads about convolution, positively wrapped (or cyclic) convolution, and neg-
atively wrapped (or negacyclic) convolution. In general, convolution (written
as ∗) of two functions f(x) and g(x) is defined as [Nus82, Sec 2.2.4]

[f ∗ g](x) = ∫ f(τ)g(x − τ)dτ.

However, if f and g are polynomials in Z[x] (or Zq[x]), the convolution
of f and g is equivalent to polynomial multiplication. Similarly, cyclic con-
volution is equivalent to multiplication in Z[x]/(xn − 1) (or Zq[x]/(x

n − 1)),
and negacyclic convolution is equivalent to multiplication in Z[x]/(xn + 1)
(or Zq[x]/(x

n + 1)). These terms are often used interchangeably.
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x0x1x2x3x4

a0b0a0b1a0b2
++

a1b0a1b1a1b2
++

a2b0a2b1a2b2

(a) Z[x]

x0x1x2

a0b0a0b1a0b2
+++

a1b0a1b1 a1b2
+ + +

a2b0 a2b1a2b2

(b) Z[x]/(x3
− 1)

x0x1x2

a0b0a0b1a0b2
−++

a1b0a1b1 a1b2
+ − −

a2b0 a2b1a2b2

(c) Z[x]/(x3
+ 1)

Figure 2.1: Schoolbook multiplication of polynomials a = a2x
2+a1x+a0 and

b = b2x
2 + b1x + b0

2.2.1 Schoolbook Multiplication

Before diving into the different algorithms available for polynomial multipli-
cation, it makes sense to revisit the problem at hand and its straightforward
solution: Given two n-coefficient polynomials a, b in some polynomial ring,
we want to compute the product a ⋅ b. In case the polynomial ring is Z[x] or
Zq[x], the multiplication is defined as

a ⋅ b =
n−1
∑
i=0

n−1
∑
j=0

ai ⋅ bj ⋅ x
i+j .

In case the polynomial ring is Z[x]/(xn − 1), the multiplication becomes

a ⋅ b ≡
n−1
∑
i=0

n−i−1
∑
j=0

ai ⋅ bj ⋅ x
i+j +

n−1
∑
j=1

n−1
∑

i=n−j
ai ⋅ bj ⋅ x

i+j−n (mod xn − 1).

Similarly, for Z[x]/(xn + 1) the multiplication is defined as

a ⋅ b ≡
n−1
∑
i=0

n−i−1
∑
j=0

ai ⋅ bj ⋅ x
i+j −

n−1
∑
j=1

n−1
∑

i=n−j
ai ⋅ bj ⋅ x

i+j−n (mod xn + 1).

As we usually work with polynomial rings over Zq rather than over Z,
the intermediate addition and multiplication of coefficients can be performed
modulo q.

Example 2: Let a = x2 + 2x + 3, b = x2 + x.
In Z[x], the product is x4 + 3x3 + 5x2 + 3x.
In Z[x]/(x3 − 1), the product is (5x2 + 3x) + (x + 3) = 5x2 + 4x + 3.
In Z[x]/(x3 + 1), the product is (5x2 + 3x) − (x + 3) = 5x2 + 2x − 3.

These three multiplications are illustrated for 3-coefficient polynomials in
Figure 2.1. When implementing schoolbook multiplication, there exist two
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different approaches: Either one fixes a coefficient ai and iterates through
all coefficients of b. This corresponds to computing one row in Figure 2.1
and is called operand scanning. Alternatively, one uses product scanning,
where one column in Figure 2.1 is computed at a time.

Note that the number of multiplications of coefficients required for all
these algorithms is n2, while the number of additions is (n−1)2. For small n
it is often the case that schoolbook multiplication is actually the fastest ap-
proach available as most other approaches work by breaking down a larger
multiplication into multiple smaller ones which incur some overhead that
may outweigh the gain. The actual cut-off point for each method not only
depends on the polynomial ring, but also on the available multipliers and
adders on the target platform and their respective performance characteris-
tics. Hence, it is important to understand the optimal approach to imple-
ment schoolbook multiplication.

Application: Schoolbook multiplication of small polynomials is often
used as a building block in other multiplications methods. Chapter 5
describes extensive optimization on the Arm Cortex-M4 of schoolbook
multiplications for polynomials with eight to 16 coefficients applicable,
for example, to Saber [DKRV17] and NTRU [ZCH+19].
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2.2.2 Karatsuba Multiplication

Karatsuba’s multiplication method [KO63] allows breaking down a large
polynomial multiplication (n-coefficient multiplicands) into three smaller
polynomial multiplications with n/2-coefficient multiplicands. The follow-
ing example illustrates Karatsuba’s idea.

Example 3: Consider the most straightforward example with 2-
coefficient inputs a = a1x + a0 and b = b1x + b0. The schoolbook method
from the previous section would compute the product a ⋅ b as

a ⋅ b = (a1x + a0)(b1x + b0) = a1b1x
2 + (a0b1 + a1b0)x + a0b0.

This requires four coefficient multiplications and one coefficient addition.
The Karatsuba algorithm exploits the fact that

(a0b1 + a1b0) = (a0 + a1)(b0 + b1) − a1b1 − a0b0.

It hence computes the product as

a ⋅b = (a1x+a0)(b1x+b0) = a1b1x
2+((a0+a1)(b0+b1)−a1b1−a0b0)x+a0b0.

This now requires five coefficient products. However, a0b0 and a1b1 are
used twice, consequently, we only need to compute three coefficient mul-
tiplications. Despite the savings in multiplications, we now also require
more additions. In total, four additions are needed.

This approach can be easily generalized to arbitrary-degree polynomials.
Consider a = ∑

n−1
i=0 aix

i, b = ∑
n−1
i=0 bix

i. We now set t = x⌊
n
2
⌋, and rewrite

a = a(1)t+a(0), b = b(1)t+b(0) where a(0) and b(0) are ⌊n
2
⌋-coefficient poly-

nomials consisting of the lower half of the coefficients of a and b. Conversely,
a(1) and b(1) are ⌈n

2
⌉-coefficient polynomials consisting of the upper half of

the coefficients of a and b. We can then use Karatsuba, to compute a ⋅b using
a(0) ⋅ b(0), a(1) ⋅ b(1), and (a(0) + a(1)) ⋅ (b(0) + b(1)). Note that the smaller
multiplications are now ⌊n

2
⌋- or ⌈n

2
⌉-coefficient polynomial multiplications.

We illustrate the Karatsuba trick for n = 4 in Figure 2.2a.

Recursive Karatsuba. For large-degree inputs, this approach can be ap-
plied recursively. We can break down an n-coefficient multiplication into
three n/2-coefficient multiplications each of which gets broken down into
three n/4-coefficient multiplications. This is called applying multiple layers
of Karatsuba. Each additional layer introduces more additions while saving
some multiplications. It is likely that it is not optimal to do this all the way
down to 1-coefficient polynomials at which polynomial multiplication be-
comes trivial, but rather one wants to stop earlier and perform a schoolbook
multiplication of small-degree polynomials.
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x6 x5 x4 x3 x2 x1 x0

w0w1w2y0y1y2
+ + +

z0z1z2
− − −

w0w1w2

− − −

y0y1y2

(a) Karatsuba

x6 x5 x4 x3 x2 x1 x0

w0w1h0−h0y1y2
+ + +

z0z1z2
− −

w0w1

− −

y1y2

(b) Refined Karatsuba

Figure 2.2: Karatsuba multiplication and refined Karatsuba multiplication
for polynomials a = a0 + a1x + a2x

2 + a3x
3, b = b0 + b1x + b2x

2 + b3x
3. Let

w = (a0 + a1x)(b0 + b1x), y = (a2 + a3x)(b2 + b3x), z = ((a0 + a2) + (a1 +
a3)x)((b0 + b2) + (b1 + b3)x). For refined Karatsuba, let h = w2 − y0.

Example 4: A common approach for multiplying 256-coefficient poly-
nomials is to use four layers of Karatsuba and then switch to schoolbook
multiplication. The schoolbook multiplications handle polynomials with
256/16 = 16 coefficients and we need a total of 34 = 81 of them.

Refined Karatsuba. Looking at Figure 2.2a, one can see that the term
x2 − y0 appears twice in our product. Once for coefficient c(2), and once for
coefficient c(4) (as y0 − x2). We can exploit this fact and simply compute
the subtraction once as h = x2 − y0. The result is what is referred to as
refined Karatsuba [Ber01] and is shown in Figure 2.2b. Assuming inputs of
n coefficients, this trick can save (n/2) ⋅ 2 − 1 = n − 1 subtractions. Note,
however, that this will only work if the negation of h can be computed for
free. This can be achieved by computing z2 − h rather than −h + z2.

Application: Chapter 5 describes how to use recursive refined Karat-
suba to implement efficient multiplications of polynomials of degree 16 to
about 256 on the Arm Cortex-M4. Below degree 16 schoolbook multipli-
cation is superior, above 256 Toom–Cook outperforms Karatsuba.

2.2.3 Toom–Cook Multiplication

The idea of splitting up input polynomials into smaller polynomials as done
by Karatsuba’s multiplication algorithm can be generalized to split into a
larger number of polynomials. One such generalization is Toom–Cook mul-
tiplication [Too63, Coo66]. N -way Toom–Cook (or Toom-N for short) is
splitting polynomials with n coefficients into N parts of n/N coefficients
each. The underlying smaller polynomial multiplications will then process
polynomials of n/N coefficients.
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For example, Toom-3 splits inputs into three parts of n/3 coefficients.
This is done in the following way: We substitute y = xn/3 and write the
polynomial a as y2a(2) + ya(1) + a(0) and proceed similarly for the input b.
The goal is now to compute the product

c = a ⋅ b = y4c(4) + y3c(3) + y2c(2) + yc(1) + c(0).

Toom–Cook does so by evaluating the polynomial a and b at certain
values of y, then multiplying the smaller n/N polynomials, such that c can
be recovered from the smaller products using interpolation. For Toom-3,
this requires five values for y. A common choice is y = {0,1,−1,−2,∞} with
a(∞) = a(2) Evaluating a and b yields

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(0)
a(1)
a(−1)
a(−2)
a(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 1 1
1 −1 1
1 −2 4
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a(0)

a(1)

a(2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b(0)
b(1)
b(−1)
b(−2)
b(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 1 1
1 −1 1
1 −2 4
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b(0)

b(1)

b(2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

By pointwise multiplication, we obtain five points of c = a ⋅ b which is
sufficient to recover the polynomial y4c(4) + y3c(3) + y2c(2) + yc(1) + c(0).

Given that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(0) ⋅ b(0)
a(1) ⋅ b(1)
a(−1) ⋅ b(−1)
a(−2) ⋅ b(−2)
a(∞) ⋅ b(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(0)
c(1)
c(−1)
c(−2)
c(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 −2 4 −8 16
0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(0)

c(1)

c(2)

c(3)

c(4)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

we can obtain c(0), c1), c(2), c(3), and c(4) by inverting the matrix as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(0)

c(1)

c(2)

c(3)

c(4)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1/2 1/3 −1 1/6 −2
−1 1/2 1/2 0 −1
−1/2 1/6 1/2 −1/6 2
0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(0)
c(1)
c(−1)
c(−2)
c(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This immediately reveals a disadvantage of Toom multiplication. In the
case of Toom-3, one needs to be able to divide by 3 and 2. As we are
commonly working in a finite ring Zq, this presents a challenge. In general,
there are two ways this can be achieved: If working in Zq with q co-prime to
2 and 3, one can simply multiply by the inverses of 2 and 3. However, if q is
not co-prime to either 2 or 3, this is no longer possible. To counter this issue,
we instead need to do all computations modulo a larger q′, such that we can
be sure that whenever we need to do divisions, the remainder will always
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Algorithm 1 Toom-3 evaluation and interpolation sequence

Input: a = a(0) + a(1)y + a(2)y2, b = b(0) + b(1)y + b(2)y2

Output: c = a ⋅ b = c(0) + c(1)y + c(2)y2 + c(3)y3 + c(4)y4

1: a(0) ← a(0) b(0) ← b(0) ▷ Evaluate a and b at yi = {0,1,−1,−2,∞}
2: t← a(0) + a(2) a(1) ← t + a(1) a(−1) ← t − a(1)

3: t← b(0) + b(2) b(1) ← t + b(1) b(−1) ← t − b(1)

4: a(−2) ← a(0) − 2a(1) + 4a(2) b(−2) ← b(0) − 2b(1) + 4b(2)

5: a(∞) ← a(2) b(∞) ← b(2)

6: ... ▷ Perform small mults to obtain c(0), c(∞), c(1), c(−1), c(−2)
7: c(0) ← c(0) c(4) ← c(∞) ▷ Interpolate c
8: t1 ← (c(−2) − c(1))/3 ▷ −c(1) + c(2) − 3c(3) + 5c(4)

9: t2 ← (c(1) − c(−1))/2 ▷ c(1) + c(3)

10: t3 ← c(−1) − c(0) ▷ −c(1) + c(2) − c(3) + c(4)

11: c(3) ← (t3 − t1)/2 + 2c
(4)

12: c(2) ← t3 + t2 − c
(4)

13: c(1) ← t2 − c
(3)

be 0. If 2 ∣ q, we need q′ ≥ 2q; if 3 ∣ q, we need q′ ≥ 3q; if 6 ∣ q, we need q′ ≥ 6q.
Note that in the common case where q is a power of two, the inverse of 2
does not exist, and consequently, we need q′ = 2q, i.e., an additional bit is
needed. In the literature, this is sometimes referenced to Toom–Cook losing
bits of precision. In practice, this places constraints on the moduli that can
be supported by our multiplication routine. For example, if we would like
to use 16-bit coefficients, our Toom-3 implementation only supports q ≤ 215.

Note that the performance of Toom–Cook is in large parts determined by
the efficiency of the evaluation and interpolation stages. A straightforward
implementation of each row of the Toom evaluation matrix and interpolation
matrix will not yield a competitive implementation. Algorithm 1 outlines a
more efficient evaluation and interpolation sequence.

Toom-4. Similarly, the Toom–Cook can be used to split into more and
smaller parts. For example, Toom-4 uses

a = y3a(3) + y2a(2) + ya(1) + a(0).

It is not hard to see that this requires to evaluate both arguments at
seven points as the resulting product contains terms up to y6:

a ⋅ b = c = y6a(6) + y5a(5) + y4a(4) + y3a(3) + +y2a(2) + ya(1) + c(0).
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Common evaluation points for Toom-4 are y = {0,1,−1,2,−2,3,∞}, i.e.,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(0)
a(1)
a(−1)
a(2)
a(−2)
a(3)
a(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 1 1 1
1 −1 1 −1
1 2 4 8
1 −2 4 −8
1 3 9 27
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(0)

a(1)

a(2)

a(3)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

After multiplying a(yi) with b(yi), we have

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(0) ⋅ b(0)
a(1) ⋅ b(1)
a(−1) ⋅ b(−1)
a(2) ⋅ b(2)
a(−2) ⋅ b(−2)
a(3) ⋅ b(3)
a(∞) ⋅ b(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(0)
c(1)
c(−1)
c(2)
c(−2)
c(3)
c(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1
1 2 4 8 16 32 64
1 −2 4 −8 16 −32 64
1 3 9 27 81 243 729
0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(0)

c(1)

c(2)

c(3)

c(4)

c(5)

c(6)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By inverting the matrix, we obtain the following for interpolation:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(0)

c(1)

c(2)

c(3)

c(4)

c(5)

c(6)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
−1/3 1 −1/2 −1/4 1/20 1/30 −12
−5/4 2/3 2/3 −1/24 −1/24 0 4
5/12 −7/12 −1/24 7/24 −1/24 −1/24 15
1/4 −1/6 −1/6 1/24 1/24 0 −5
−1/12 1/12 1/24 −1/24 −1/120 1/120 −3

0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(0)
c(1)
c(−1)
c(2)
c(−2)
c(3)
c(∞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which requires a much longer evaluation and interpolation sequence. One
which proved to yield good performance results in practice is shown in Al-
gorithm 2. Note that we need to divide by 120 = 5 ⋅ 3 ⋅ 23 and, consequently,
either q needs to be co-prime to 120, such that we can multiply by the in-
verses, or that we need to perform the smaller multiplications modulo 120q
such that no wrap-around happens. If q is a power of two, it suffices to use
q′ = 8 ⋅ q, i.e., use three extra bits.

Picking evaluation points. In previous sections, we have picked points y
at which to evaluate the polynomials. Those points seemingly came out of
thin air. Indeed, it is possible to pick other points and it is not immediately
clear that these points are optimal. It appears natural to always use 0 and
∞ as those are cheap to evaluate at and interpolate from. The other points
are arbitrary, and one picks the ones that give the best performance. The
points presented in this section are the ones most commonly used in the
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Algorithm 2 Toom-4 interpolation sequence

Input: a = a(0) + a(1)y + a(2)y2 + a(3)y3, b = b(0) + b(1)y + b(2)y2 + b(3)y3

Output: c = a ⋅ b = c(0) + c(1)y + c(2)y2 + c(3)y3 + c(4)y4 + c(5)y5 + c(6)y6

1: ... ▷ Evaluate a and b at y = {0,1,−1,2,−2,3,∞}
2: ... ▷ Small multiplications → c(0), c(∞), c(1), c(−1), c(2), c(−2), c(3)
3: c(0) ← c(0) c(6) ← c(∞) ▷ Interpolate c
4: t0 ← (c(1) + c(−1))/2 − c

(0) − c(6) ▷ c(2) + c(4)

5: t1 ← (c(2) + c(−2) − 2c
(0) − 128c(6))/8 ▷ c(2) + 4c(4)

6: c(4) ← (t1 − t0)/3 c(2) ← (t0 − c
(4))

7: t0 ← (c(1) − c(−1))/2 ▷ c(1) + c(3) + c(5)

8: t1 ← ((c(2) − c(−2))/4 − t0)/3 ▷ c(3) + 5c(5)

9: t2 ← (c(3) − c
(0) − 9c(2) − 81c(4) − 729c(6))/3 ▷ c(1) + 9c(3) + 81c(5)

10: t2 ← (t2 − t0)/8 − t1 ▷ 5c(5)

11: c(5) ← t2/5 c(3) ← t1 − t2 c(1) ← t0 − c
(3) − c(5)

literature in the context of lattice-based cryptography, but other choices are
possible.

Finding the best combination of Toom-N and Karatsuba. Since
Toom–Cook, as well as Karatsuba, can be applied recursively, there are a
large number of combinations that can be constructed. The actual optimal
choice depends on the target platform and polynomials to be multiplied. The
modulus q introduces the largest restrictions. In case it is prime, many more
combinations are possible, while for even moduli, higher order Toom–Cook
and many combinations are not possible due to the requirements of using a
larger q in the smaller multiplications. For example, if smaller multiplica-
tions are done using 16-bit multiplications, q must be at most 215 (2 ⋅q ≤ 216)
for Toom-3, and at most 213 (8 ⋅q ≤ 216) for Toom-4. Applying a combination
of Toom-4 and Toom-3 would require 8 ⋅ 2 ⋅ q = 16 ⋅ q ≤ 216, i.e., q ≤ 212.

Application: In Chapter 5, Toom-3 and Toom-4 are used in combination
with Karatsuba to multiply polynomials of degree 256 and above on the
Arm Cortex-M4.

2.2.4 Number-Theoretic Transform (NTT)

The number-theoretic transform can be seen as a discrete Fourier transform
in a finite ring. The general idea is to perform (polynomial) multiplications
by transforming both factors to a different domain in which multiplications
are cheap. In the case of discrete Fourier transforms, this domain is called
the frequency domain, while for NTTs, we refer to it as the NTT domain.
Elements in the NTT domain are commonly identified by a hat, e.g., â. The
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product is then transformed back to the normal domain which is also called
the time domain using the inverse NTT (NTT−1).

Given two polynomials a, b, one computes their product as

c = a ⋅ b = NTT−1(NTT(a) ○NTT(b))

with ○ referring to the multiplication in the NTT domain. In the most
straightforward instantiation of NTTs, ○ simply means coefficient-wise mul-
tiplication modulo q.

For simplicity, we assume that q is a prime number as this makes the
explanation easier. However, composite-modulus NTTs are possible and are
being used. For understanding NTTs, there is an essential mathematical
entity that we need to understand: primitive roots of unity in Zq [Nus82,
Sec. 2.1.3]. An element a ∈ Zq is a k-th (with k ∈ N) root of unity if ak ≡ 1

mod q. It is a primitive root of unity, if there is no k′ < k, s.t. ak
′
≡ 1 mod q.

A primitive k-th root of unity exists only if k ∣ (q − 1) (or more generally, it
only exists if k divides the order of Z∗q .) Throughout this section, ωk denotes
a primitive k-th root of unity.

Example 5: 1 and −1 ≡ q − 1 mod q are 2-nd roots of unity. However,
only −1 is a primitive 2-nd root of unity.
For Z7, there are six 6-th roots of unity ({1,2,3,4,5,6}), but only {3,5}
are primitive 6-th roots of unity.

When computing an NTT, one is evaluating a polynomial at powers of
a primitive root of unity ωk: ω

0
k, ω

1
k, . . . , ω

n−1
k .

The NTT [Nus82, Sec. 8.1] is defined as

â =
n−1
∑
i=0

âix
i with âi =

n−1
∑
j=0

ajω
i⋅j
k .

Transforming â to the normal domain is achieved by computing NTT−1

as

a =
n−1
∑
i=0

aix
i with ai = n

−1
n−1
∑
j=0

âjω
−i⋅j
k .
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Example 6: From the definition of the NTT, it is not immediately obvi-
ous why it works. Consider the following example: We want to multiply
a = a1x+a0 by b = b1x+b0 with coefficients in Z7. We know that the result
will be of degree at most 2, therefore, we have to evaluate at 3 points. To
compute the NTT, we require a 3-rd root of unity, e.g., ω3 = 2. We now
evaluate a(x) and b(x) at x = {ω0

3 , ω
1
3 , ω

2
3}:

â =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a(ω0
3)

a(ω1
3)

a(ω2
3)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [
1 1
1 ω3
1 ω2

3

] [a0a1
] and b̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b(ω0
3)

b(ω1
3)

b(ω2
3)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [
1 1
1 ω3
1 ω2

3

] [b0b1
] .

A pointwise multiplication yields

â ○ b̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c(ω0
3)

c(ω1
3)

c(ω2
3)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

a0b0 + a0b1 + a1b0 + a1b1
a0b0 + ω3a0b1 + ω3a1b0 + ω

2
3a1b1

a0b0 + ω
2
3a0b1 + ω

2
3a1b0 + ω3a1b1

⎤
⎥
⎥
⎥
⎥
⎦

.

Computing NTT−1 corresponds to the interpolation of c(x) from c(ω0
3),

c(ω1
3), and c(ω2

3). For that we require the inverse of ω3 which in our
example is ω−13 = 4.
It now holds that,

[
c0
c1
c2
] = 3−1

⎡
⎢
⎢
⎢
⎢
⎣

1 1 1
1 ω−13 ω−23
1 ω−23 ω−13

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c(ω0
3)

c(ω1
3)

c(ω2
3)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [
a0b0

a0b1 + a1b0
a1b1

] .

It is important to note here that this all works out because 1+ω3+ω
2
3 ≡ 0

mod q. It is not hard to see that this can be generalized to any size of
polynomials as long as the appropriate primitive root of unit exists.

In a normal polynomial multiplication for n-coefficient factors, it is suf-
ficient to evaluate the polynomials at 2n − 1 points. However, in real imple-
mentations, this is never how it is done because working with polynomials
of odd length is very disadvantageous for fast implementations. Hence, one
would use 2n points or round up to the closest power of two.

Finding a root of unity. In the previous examples, we have pulled the
primitive root of unity out of thin air. The easiest way to find one is to try
all field elements and check if they are indeed a k-th primitive root of unity.

Example 7: Considering Z17, we can check the multiplicative order
of each element, and find that 16 is a primitive 2-nd root of unity,
{4,13} are 4-th roots of unity, {2,8,9,15} are 8-th roots of unity, and
{3,5,6,7,10,11,12,14} are 16-th roots of unity. If one needs a 16-th root
of unity, any of the eight possible values will work and result in a correct
NTT. Usually, the root is arbitrarily picked as the smallest available.
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Cyclic NTT

One big advantage of NTT-based multiplication is that it naturally supports
convolutions. In the case of cyclic convolutions (modulo xn − 1), this is
possible using a cyclic NTT which is exactly the NTT that was introduced
in the previous section. However, one only needs to evaluate at n roots of
unity. Why this works can be easily seen in the following example. For a
more formal proof of the correctness, see [Nus82, Theorem 8.1].

Example 8: Consider the polynomial ring Zq[x]/(x
2 − 1), and assume

there is a 2-nd root of unity ω2, i.e., ω
2
2 ≡ 1 mod q. The polynomials

a = a1x + b0, b = b1x + b0, can be transformed to the NTT domain by
evaluating the polynomials at ω0

2 , ω
1
2 :

â = [
a(ω0

2)
a(ω1

2)
] = [1 1

1 ω2
] [a0a1
] and b̂ = [

b(ω0
2)

b(ω1
2)
] = [1 1

1 ω2
] [b0b1
] .

A pointwise multiplication yields

â ○ b̂ = [
c(ω0

2)
c(ω1

2)
] = [ a0b0 + a0b1 + a1b0 + a1b1

a0b0 + ω2a0b1 + ω2a1b0 + a1b1
] .

When we apply the NTT−1 to that pointwise product we obtain

[c0c1] = 2
−1 [

1 1
1 ω−12

] [
c(1)
c(ω2)

] = [a0b0 + a1b1a0b1 + a1b0
] ,

which coincides with polynomial multiplication in Zq[x]/(x
n − 1).

Negacyclic NTT.

Similarly, we would like to multiply polynomials in Zq[x]/(x
n+1). This can

be achieved using the negacyclic NTT [SS71]. Given a 2n-th root of unity
ω2n (i.e., ω2

2n = ωn), it is defined as

â =
n−1
∑
i=0

âix
i with âi =

n−1
∑
j=0

ajω
j
2nω

i⋅j
n .

Its inverse is defined as

a =
n−1
∑
i=0

aix
i with ai = n

−1ω−i2n

n−1
∑
j=0

âjω
−i⋅j
n .

Note that the negacyclic NTT is the same as multiplying each input co-
efficient ai by ωi

2n and then applying the NTT as defined in the previous
section. The multiplication by the powers of roots of unity is called twist-
ing [Ber01]. The inverse also works similarly, but the output is twisted back
by multiplying by powers of ω−12n.
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x4
− 1

x2
− 1

x − 1

x − ω0
4

x + 1

x − ω2
4

x2
+ 1

x − ω4

x − ω1
4

x + ω4

x − ω3
4

(a) Cyclic NTT for Zq[x]/(x
n
− 1)

x4
+ 1

x2
− ω4

x − ω8

x − ω1
8

x + ω8

x − ω5
8

x2
+ ω4

x − ω3
8

x − ω3
8

x + ω3
8

x − ω7
8

(b) Negacyclic NTT for Zq[x]/(x
n
+ 1)

Figure 2.3: Splitting polynomial rings using the NTT.

Example 9: Let our input polynomials be a = ∑
n−1
i=0 aix

i and b =

∑
n−1
i=0 bix

i. We twist both polynomials by multiplying by powers of ω2n

to obtain a′ = ∑
n−1
i=0 aiω

i
2nx

i and b′ = ∑
n−1
i=0 biω

i
2nx

i. Now, we perform a
regular polynomial multiplication (e.g., using schoolbook multiplication)
to obtain c′ = ∑

2n−1
i=0 c′ix

iωi
2n. Since ωn

2n ≡ −1 mod q, we can rewrite this
as c′ = ∑

n−1
i=0 c

′
ix

iωi
2n − ∑

2n−1
i=n c′ix

iωi−n
2n . When this is convoluted modulo

xn − 1 and twisted back (i.e., the powers of ω2n being removed), we ob-
tain the correct product of a and b modulo xn + 1. Note that the regular
polynomial multiplication and reduction modulo xn − 1 can be replaced
by an implementation using a cyclic NTT.

Changing perspective: Chinese Remainder Theorem (CRT)

There is another way to think about what an NTT is, which may appear
more natural or elegant: The polynomial x2n−1 can be split into two factors:
xn − 1 and xn + 1. That means that a polynomial a in Zq[x]/(x

2n − 1) can
be split into two polynomials, a′ in Zq[x]/(x

n − 1) and a′′ in Zq[x]/(x
n + 1)

by simply reducing modulo xn − 1 and modulo xn + 1. From the two smaller
polynomials, one can recover the original polynomial using the Chinese Re-
mainder Theorem (CRT), i.e.,

a =
n−1
∑
i=0

1

2
(a′i + a

′′
i )x

i +
n−1
∑
i=0

1

2
(a′i − a

′′
i )x

n+i.

Example 10: Let a = a0 + a1x + a2x
2 + a3x

3, we can then compute a′ =
(a0+a2)+(a1+a3)x and a′′ = (a0−a2)+(a1−a3)x. To recover the original
a, we compute a = 1

2
((a′0 + a

′′
0) + (a

′
1 + a

′′
1)x + (a

′
0 − a

′′
0)x

2 + (a′1 − a
′′
1)x

3).

For even n, one can apply this trick again for xn − 1 since xn − 1 =
(xn/2−1)(xn/2+1). However, we can also do the same for xn+1 in case there
is an appropriate root of unity ω4 =

√
−1, s.t. xn +1 = (xn/2 −ω4)(x

n/2 +ω4).
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a //

&&

+ // a + ωb

b // ×

@@

// − // a − ωb

ω

OO

(a) Cooley–Tukey Butterfly [CT65]

a //

��

+ // a + b

b //

BB

− // × // 1
ω
(a − b)

ω−1

OO

(b) Gentleman–Sande Butterfly [GS66]

Figure 2.4: The “Butterflies” of Fast Fourier Transforms

Applying this trick recursively, it is easy to see that, we can split xn − 1
into n linear parts in case there exists an n-th root of unity ωn:

xn − 1 =
n−1
∏
i=0
(x − ωi

n).

This splitting is illustrated in Figure 2.3a.
Similarly, for xn + 1 we can fully split into linear terms in case a 2n-th

root of unity ω2n exists as illustrated in Figure 2.3b:

xn + 1 =
n−1
∏
i=0
(x − ω2nω

i
n) =

n−1
∏
i=0
(x − ω2i+1

2n ).

Application: Chapter 3, Chapter 4, and Chapter 6 cover how to effi-
ciently implement NTTs for Kyber, Dilithium, Saber, NTRU, and LAC. On
the Cortex-M4, NTTs are superior to Toom and Karatsuba multiplica-
tion for these schemes.

2.2.5 Algorithms for Computing NTTs

Using NTTs for fast arithmetic is only beneficial if the transformations them-
selves can be implemented efficiently. From the previous section, it is not
obvious that these can be implemented efficiently. A straightforward imple-
mentation of the transformation requires n2 multiplications and is, therefore,
not at all better than just using the schoolbook method for the multiplica-
tion itself. However, there are much faster algorithms that allow computing
the NTT in quasi-linear time O(n logn). These algorithms are called Fast
Fourier Transform (FFT) algorithms. The two most prominent ones are by
Cooley–Tukey (CT) [CT65] and Gentleman–Sande (GS) [GS66]. The CT
FFT algorithm is also referred to as decimation in time (DIT) FFT, while
the GS FFT algorithm is sometimes called decimation in frequency (DIF)
FFT. It is common practice to implement the forward NTT using the CT
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Algorithm 3 CT FFT implementing forward NTT

Input: Polynomial a ∈ Zq/(x
2k ± 1); time domain, normal order

Input: Root of unity: ω2k for Zq/(x
2k − 1), ω2k+1 for Zq/(x

2k + 1)
Output: â; NTT domain, bit-reversed order

1: for l = k − 1; l ≥ 0; l ← l − 1 do
2: for i = 0; i < 2k−1−l; i← i + 1 do

3: ψ ←

⎧⎪⎪
⎨
⎪⎪⎩

ω
brvk−1(i)
2k

for Zq/(x
2k − 1)

ω
brvk(2k−1−l+i)
2k+1 for Zq/(x

2k + 1)

4: for j = i ⋅ 2l+1; j < i ⋅ 2l+1 + 2l; j ← j + 1 do
5: t0 ← aj
6: t1 ← ψ ⋅ aj+2l
7: aj ← t0 + t1
8: aj+2l ← t0 − t1
9: end for

10: end for
11: end for

FFT, and the NTT−1 using the GS FFT. However, both transforms can be
implemented using either of the two, and it highly depends on the target
platform and parameters which one is best.

FFT algorithms are characterized by their butterfly operations. Fig-
ure 2.4a and Figure 2.4b show the butterfly of the CT and GS FFT al-
gorithm respectively. The CT does straightforwardly implement the split

of Zq[x]/(x
2k − c2) into Zq[x]/(x

2k−1 − c) and Zq[x]/(x
2k−1 + c). The mul-

tiplicand c is a constant and is called the twiddle factor. Similarly, the

Gentleman–Sande butterfly computes the CRT of elements in Zq[x]/(x
2k−1 −

c) and Zq[x]/(x
2k−1 + c) yielding an element in Zq[x]/(x

2k − c2) using the
twiddle factor c−1. We can also express this as a ring isomorphism ϕ ∶
Zq[x]/ (f(x)g(x)) ≅ Zq[x]/ (f(x)) × Zq[x]/ (g(x)), ϕ(h) = (hmod f, hmod
g). When f(x) = xn − c and g(x) = xn + c, ϕ naturally becomes

ϕ(
2n−1
∑
i=0

hix
i) =

⎛
⎜
⎜
⎝

n−1
∑
i=0
(hi + chn+i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CT

xi,
n−1
∑
i=0
(hi − chn+i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CT

xi
⎞
⎟
⎟
⎠

.

The inverse computation can be expressed as ϕ−1:

ϕ−1 ((
n−1
∑
i=0

h′ix
i) ,(

n−1
∑
i=0

h′′i x
i)) =

n−1
∑
i=0

1

2
(h′i + h

′′
i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
GS

xi +
n−1
∑
i=0

1

2

1

c
(h′i − h

′′
i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
GS

xn+i.
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Algorithm 4 GS FFT implementing NTT−1

Input: â; NTT domain, bit-reversed order

Input: Root of unity: ω2k for Zq/(x
2k − 1), ω2k+1 for Zq/(x

2k + 1)

Output: Polynomial a ∈ Zq/(x
2k ± 1); time domain, normal order

1: for l = 0; l < k; l ← l + 1 do
2: for i = 0; i < 2k−1−l; i← i + 1 do

3: ψ ←

⎧⎪⎪
⎨
⎪⎪⎩

ω
−brvk−1(i)
2k

for Zq/(x
2k − 1)

ω
−brvk(2k−1−l+i)
2k

for Zq/(x
2k + 1)

4: for j = i ⋅ 2l+1; j < i ⋅ 2l+1 + 2l; j ← j + 1 do
5: t0 ← aj + aj+2l
6: t1 ← aj − aj+2l
7: aj ← t0
8: aj+2l ← ψ ⋅ t1
9: end for

10: end for
11: end for
12: for i = 0; i < 2k; i← i + 1 do
13: ai ← n−1ai ▷ Cancel out factor of 2 for each butterfly
14: end for

Algorithm 3 and Algorithm 4 show how these butterflies can be applied
iteratively to larger polynomials to obtain a full NTT and NTT−1 in-place.
FFT algorithms have the peculiar property that their outputs are in a dif-
ferent order than one might expect: They are in so-called bit-reversed order.
Bit-reversing an array of length 2k means interpreting the index of each el-
ement as a binary string of length k and reversing the binary string. For an
index i with ij denoting the j-th bit this can be expressed as

i =
k−1
∑
j=0

ij2
j , brvk(i) =

k−1
∑
j=0

ik−j2
j .

The reversed index becomes the new index of each element. The opera-
tion can be reversed by applying the same transformation again.

Example 11: Given an array of length eight in normal order:
[a0, a1, a2, a3, a4, a5, a6, a7].
We write the indices in binary: [a000, a001, a010, a011, a100, a101, a110, a111].
Then, reverse the binary digits: [a000, a100, a010, a110, a001, a101, a011, a111].
This gives us the array in bit-reversed order: [a0, a4, a2, a5, a1, a5, a3, a7].

Since bit-reversing is a costly operation in software, one tries to avoid
explicitly performing it. Hence, whenever possible one will keep values in
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# computing tw idd l e s for a c y c l i c NTT Z q [ x ] ( xˆn − 1)
twiddlesNtt = brv ( [pow( root , i , q ) for i in range (n //2 ) ] )
twiddles InvNtt = brv ( [pow( root , −i , q ) for i in range (n //2 ) ] )

# computing tw idd l e s tw idd l e s for a negacyc l i c NTT Z q [ x ] ( xˆn + 1)
twiddlesNtt = brv ( [pow( root , i , q ) for i in range (n ) ] ) [ 1 : n ]
twiddles InvNtt = brv ( [pow( root , −( i +1) , q ) for i in range (n ) ] ) [ 0 : n−1]

Listing 2.1: Python code for generating twiddle factors

the NTT domain in bit-reversed order. Since the NTT−1 restores the normal
order, this has no impact if polynomial multiplication is implemented. Since
multiplication and addition in NTT are element-wise operations, the order
does not matter.

Looking at Algorithm 3 and Algorithm 4 one also notices that one re-
quires the twiddle factors with the exponents being bit-reversed as well.
Note that this makes it impractical to compute the twiddle factors on the
fly. Virtually all fast software implementations resolve this by pre-computing
the needed powers of the root of unity and storing them in memory. Those
can easily be derived from the tree representations of an FFT, e.g., in Fig-

ure 2.3. Splitting Zq[x]/(x
2k−c2) into Zq[x]/(x

2k−1−c) and Zq[x]/(x
2k−1+c)

uses the twiddle factor c, while the inverse uses c−1. By traversing the tree
breadth-first, we obtain [1, 1, w4] in the cyclic case, and [ω2

8 , ω8, ω
3
8 ] in the

negacyclic case.

The Python code in Listing 2.1 generalizes this manual derivation given
a function brv which reorders an array in bit-reversed order.

Note that in the cyclic case, the twiddles repeat, i.e., each layer uses
the first 2k−1−l twiddle factors from the pre-computed array, while in the
negacyclic case, each twiddle is only used once due to the required twisting.

Discrete Fourier Transform (DFT) matrices. Another way of thinking
about the FFT is by thinking about DFT matrices. A DFT matrix is defined
as

Wn = (ω
jk
n )j,k=0,...,n−1

Given this DFT matrix, a cyclic NTT transformation is multiplying the
coefficient vector of the polynomial by the DFT matrix. The NTT−1 consists
of multiplying by the inverse of the DFT matrix.
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Example 12: Let n = 4. The corresponding DFT matrix using a 4-th
root of unity ω4 is

W4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 1 ω2

4

1 ω3
4 ω2

4 ω4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The cyclic NTT of a polynomial a(x) ∈ Zq[x]/(x
4 − 1) can be written as

â =W [
a0a1a2a3
] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 1 ω2

4

1 ω3
4 ω2

4 ω4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
a0a1a2a3
] .

This can be decomposed into four Cooley–Tukey butterflies, i.e.,

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 −1 0 0
0 0 1 ω4
0 0 1 −ω4

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 ω2

4 1 ω2
4

1 ω4 ω2
4 ω3

4

1 ω3
4 ω2

4 ω4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that the second and third row are swapped, i.e., the output is in
bit-reversed order.

The negacyclic NTT can be expressed similarly by considering it as twist-
ing followed by a cyclic NTT. We writeW ′

n =Wn ⋅diag(w
i
2n)i=0,...,n−1, where

diag is a diagonal matrix containing the elements {w0
2n, . . . ,w

n−1
2n }.

Example 13: Let n = 4. The negacyclic NTT of a polynomial a(x) ∈
Zq[x]/(x

4 + 1) with a 2n-th root of unity ω2n (ω2
2n = ω4) is

â =W4 ⋅ diag(w
i
2n)i=0,...,n−1 ⋅

⎡
⎢
⎢
⎢
⎢
⎣

a0
a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 1 ω2

4
1 ω3

4 ω2
4 ω4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 ω8 0 0
0 0 ω2

8 0
0 0 0 ω3

8

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

a0
a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ω8 ω2
8 ω3

8
1 ω3

8 ω6
8 ω8

1 ω5
8 ω2

8 ω7
8

1 ω7
8 ω6

8 ω5
8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

a0
a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎦

.

When again accepting that outputs are in bit-reversed order, we can use
4 CT butterflies to implement the negacyclic NTT:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 ω8 0 0
1 −ω8 0 0
0 0 1 ω3

8
0 0 1 −ω3

8

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ω2
8 0

0 1 0 ω2
8

1 0 −ω2
8 0

0 1 0 −ω2
8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ω8 ω2
8 ω3

8
1 ω5

8 ω2
8 ω7

8
1 ω3

8 ω6
8 ω8

1 ω7
8 ω6

8 ω5
8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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− 1

x3
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x − 1
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9
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x − ω3
9

x − ω2
3
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9
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x − ω9

x − ω1
9

x − ω3ω9

x − ω4
9

x − ω2
3ω9

x − ω7
9

x3
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3

x − ω2
9

x − ω2
9

x − ω3ω
2
9

x − ω5
9

x − ω2
3ω

2
9

x − ω8
9

Figure 2.5: Radix-3 FFT for Z[x]/(x9 − 1)

2.2.6 Radix-3 FFT and Mixed-Radix FFT

The previous section exclusively covered FFTs working on polynomial rings

of the form Z[x]/(x2
k

± 1). These are called radix-2 FFTs as each NTT
layer splits into two parts. However, we can also use FFTs for a different
radix. Most commonly used are radix-3 and radix-5 FFTs. They can be
best studied by considering a single layer (i.e., split) of the FFT.

A radix-3 FFT splits the ring Z[x]/(x3
k+1
− c3) as

Z[x]/(x3
k+1
− c3)

→ Z[x]/(x3
k

− c) ×Z[x]/(x3
k

− ω3c) ×Z[x]/(x3
k

− ω2
3c).

A radix-3 Cooley–Tukey-style butterfly splitting Z[x]/(x3
k

± c3) for 0 ≤
i < 3k can be implemented as

âi = ai + cai+3k + c2ai+2⋅3k ,

âi+3k = ai + ω3cai+3k + ω2
3c

2ai+2⋅3k ,

âi+2⋅3k = ai + ω2
3cai+3k + ω3c

2ai+2⋅3k .

The inverse radix-3 butterfly using a Gentleman–Sande-style is

ai = 3
−1 (ai + ai+3k + ai+2⋅3k),

ai+3k = 3
−1c−1(ai + ω2

3ai+3k + ω3ai+2⋅3k),

ai+2⋅3k = 3
−1c−2(ai + ω3ai+3k + ω2

3ai+2⋅3k).
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Example 14: Of course, the radix-3 FFT trick can be applied recur-
sively. An FFT splitting Zq[x]/(x

9 − 1) into linear factors can be seen
in Figure 2.5. The twiddle factors (c, c2) for the first layer are (1,1).
For the second layer they are (1,1), (ω9, ω

2
9), and (ω

2
9 , ω9) from left to

right respectively. One may notice that the outputs are once again in a
different order than they should be. However, this time the order is not
bit-reversed, but the equivalent in base 3. As usual, we do not need to be
concerned about the order if we are implementing polynomial multiplica-
tion as pointwise multiplication can simply operate on base-3-reversed in-
puts and the inverse FFT will restore the normal order. Base-3-reversing
works similarly as bit-reversing: One represents each index in base 3 and
reverts the order of the digits, i.e.,

(0,1,2,3,4,5,6,7,8) → (00,01,02,10,11,12,20,21,22)

→ (00,10,20,01,11,21,02,12,22) → (0,3,6,1,4,7,2,5,8).

Radix-5 FFT. The above can be easily extended to FFTs for an arbi-
trary radix. For post-quantum cryptography so far only radix-5 FFTs were

used. One layer of a radix-5 FFT splits Zq[x]/(x
5k+1 − c5) into 5 elements

in Zq[x]/(x
5k −w5

ic) for i = {0,1,2,3,4}.

Mixed-radix FFTs. The FFTs for different radices can be combined. One
could, for example, perform one layer of radix-2 butterflies followed by a
layer of radix-3 butterflies to obtain a 6-FFT. This can be very useful for
schemes that have not been specifically designed for the use of the NTT and,
hence, often do not nicely split using radix-2 FFTs.

Application: Chapter 6 covers how to efficiently implement
ntruhps4096821 [ZCH+19] which requires polynomial multiplication in
Z2048/(x

701 − 1). This can be implemented using a cyclic NTT for
Z3365569/(x

1536 − 1), which can be efficiently implemented by using 9-
layer radix-2 FFTs followed by a 1-layer radix-3 FFT.

2.2.7 Incomplete NTT

A standard radix-2 FTT is splitting a ring (e.g., Zq[x]/(x
n − 1)) down into

smaller rings down to having elements in Zq[x]/(x − ω
i
n) (0 ≤ i < n), each

consisting of only one coefficient. In one step of the FFT algorithm, a poly-

nomial in Zq[x]/(x
2k − c2) is split into one element in Zq[x]/(x

2k−1 − c) and

one element in Zq[x]/(x
2k−1 + c). Those then get split into Zq[x]/(x

2k−2 −
√
c),Zq[x]/(x

2k−2 +
√
c),Zq[x]/(x

2k−1 +
√
−c),Zq[x]/(x

2k−1 +
√
−c) and so

forth.

35



x8
+ 1

x4
− ω4

x2
− ω8

x2
− ω1

8

x2
+ ω8

x2
− ω5

8

x4
+ ω4

x2
− ω3

8

x2
− ω3

8

x2
+ ω3

8

x2
− ω7

8

Figure 2.6: Incomplete FFT for Z[x]/(x8 + 1)

In this case, it is natural to consider to stop earlier, i.e., instead of doing
log2 n splits down to linear terms in Zq[x]/(x − ω

i
n) (0 ≤ i < n), we could

do log2 n − 1 splits and end up with elements in Zq[x]/(x
2 − ωi

n/2). This is
referred to as an incomplete NTT in the literature.

It results in some clear advantages, the most prominent being that it
results in fewer restrictions regarding the prime q. In the cyclic NTT example
above, only a n/2-th root of unity is needed, while in the case of negacyclic
NTTs, an n-th root of unity suffices. This gives much more choices for q. For
example, Kyber [ABD+17] used q = 7681 in the initial submission together
with a negacyclic complete NTT for Zq[x]/(x

256 + 1). In the second round
of the NISTPQC competition q was changed to 3329. Since no 512-th root
of unity modulo 3329 exists, this was only made possible by switching to an
incomplete (7-layer) NTT.

Note that the multiplication in the NTT domain is affected by this
change as well. The coefficient-wise multiplication becomes multiplication
in Zq[x]/(x

2 − ωi
n). This multiplication is usually referred to as base multi-

plication. Two elements a, b ∈ Zq[x]/(x
2 −ωi

n) (a = a1x+a0, b = b1x+ b0) can
be multiplied by

c = (a1x + a0)(b1x + b0) = (a0b0 + a1b1ω
i
n) + (a0b1 + a1b0)x,

where ωi
n is different for each of the n/2 multiplications.

Why it is worth it. Besides leaving more freedom for the choice of pa-
rameters, polynomial multiplication using incomplete NTT is often faster
than complete NTT. This can be easily seen by counting operations. One
butterfly costs one multiplication and two additions/subtractions, i.e., n/2
multiplications and n additions for one layer of NTT. Since this is required
for both operands and also the inverse transformation of the result, we end
up needing 3 ⋅n/2 multiplications and 3n additions per layer of NTTs. How-
ever, we also need to consider the cost of base multiplication: If polynomials
are of degree 0, the base multiplication (pointwise multiplication) costs 1
multiplication and 0 additions. For 2-coefficient polynomials, this increases
to five multiplications and two additions. Hence, by stopping one layer early,
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we pay additional 4n/2 multiplications and 2n/2 additions, but save 3 ⋅ n/2
multiplications and 3n additions which results in a net saving of additions at
the cost of additional multiplications. For platforms where multiplications
are as cheap as additions, this results in a net speed-up.

How incomplete should it be? The optimal degree of incompleteness
needs to be determined for each target platform separately. For example,
on the Cortex-M4 it often makes sense [CHK+21] to stop two layers early
as a 4 × 4 schoolbook implementation can be implemented rather efficiently
using the available multiply-and-accumulate instructions. However, in case
the NTT is being built into the specification of the cryptographic scheme (as
it is the case for Kyber [ABD+17], and Dilithium [LDK+17]), the implementer
is not given any choice.

Application: Kyber (since the second round of the NIST competition)
is using incomplete NTTs to implement polynomial multiplication in
Z3329[x]/(x

256 + 1). Chapter 3 describes how to implement it efficiently
on the Cortex-M4. Our implementations of Saber, NTRU, and LAC cov-
ered in Chapter 5 also make use of incomplete NTTs.

2.2.8 Good’s Trick

Another trick that can be useful for polynomials that are not suitable for
radix-2 FFTs, was proposed by Good [Goo51] which is referred to as Good’s
trick or prime-factor FFT in the literature. In the context of polynomials,
it allows computing an FFT of a polynomial in Zq[x]/(x

p0p1 − 1) with p0
and p1 being co-prime. A common choice is p1 being a power of two and p0
being a small prime (e.g., 3 or 5).

Good’s trick maps Zq[x]/(x
p0p1 − 1) to Zq[y]/(y

p0 − 1)[z]/(zp1 − 1) by
setting x = yz, i.e., we present a polynomial in Zq[x]/(x

p0p1 − 1) as p0 poly-
nomials in Zq[z]/(z

p1 − 1).

The mapping (usually called Good’s permutation) between the two iso-
morphic rings corresponds to a reshuffling of the coefficients, such that
xi = yi0zi1 . This can be seen as transforming a 1-dimensional array of p0p1
coefficients into a 2-dimensional array with dimensions p0 × p1.

The forward Good’s permutation uses

i0 = i mod p0 and i1 = i mod p1.

To compute the inverse, we use the fact that p0 and p1 are co-prime and
apply the CRT to obtain i from (i0, i1):

i = (p−11 mod p0)p1i0 + (p
−1
0 mod p1)p0i1.
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Example 15: Let p0 = 3 and p1 = 2. Given a polynomial a = a0 +
a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5, applying Good’s permutation results in

a = (a0 + a3z) + (a4 + a1z)y + (a2 + a5z)y.

When using Good’s trick for polynomial multiplication of two polynomi-
als a and b, one proceeds as follows

1. Apply Good’s permutation to both a and b

2. Compute p1-NTT for each of the p0 components of both a and b

3. Compute p0-NTT for each of the p1 components of both a and b

4. Perform pointwise multiplication of the coefficients

5. Compute p0-NTT−1

6. Compute p1-NTT−1

7. Apply inverse Good’s permutation

Steps (3) to (5) can alternatively be replaced by a schoolbook multiplica-
tion mod (yp0−1) which often turns out to be faster. To achieve competitive
performance one will merge Good’s permutation with the first layer of the
NTT computation and, similarly, merge the inverse permutation with the
last layer of the NTT−1 computation.

Application: Good’s trick can be beneficial for polynomial multiplica-
tion of NTRU [ZCH+19]. We make use of it in Chapter 6.

38



2.3 Modular-Reduction Algorithms and Short
Multiplications

Thus far, we have assumed arithmetic in Zq. However, depending on the
choice of q, this presents a challenge as well. In PQC software implementa-
tions one will store coefficients as either 16-bit or 32-bit integers. Hence, the
examples in this section are limited to these choices.

In the easiest case, q is a power of two, and reductions are naturally
supported by CPUs as multiplications are implicitly modulo 216 or 232. To
obtain a value between 0 and q − 1 one uses a logical AND with q − 1. How-
ever, for schemes that do not have power-of-two q, we need a different way
for reductions. The rest of this section will introduce ways of performing
modular reduction for any odd q.

Application: Saber [DKRV17] and NTRU [ZCH+19] use a power-of-two
modulus and, hence, allow cheap modular reduction (see Chapter 5) un-
less one decides to switch to a prime modulus for performance (see Chap-
ter 6). Dilithium [LDK+17] (Chapter 4) and Kyber [ABD+17] (Chapter 3)
use a prime modulus and, hence, special care needs to be taken for mod-
ular reduction.

Notation. For a reduction to the interval from 0 to q − 1 we write a mod q
and call the result the canonical unsigned representative of a. Similarly, a
reduction to the interval from ⌊− q−1

2
⌋ to ⌊ q−1

2
⌋ is written as z mod± q and

we call the results the canonical signed representative of a.

Signed vs. unsigned representation. Common reduction algorithms
exist in multiple variants depending on inputs and results being in signed
or unsigned representation. For cryptographic schemes, the outputs (e.g.,
keys, ciphertexts) are commonly in unsigned representation, but it is often
beneficial to use signed representation for intermediate values. For example,
when subtracting unsigned values, one needs to take care that the result is
non-negative by adding an appropriate multiple of q. This can be avoided by
accepting outputs to be signed. Additionally, signed representation allows a
particularly fast Montgomery reduction which is introduced in Section 2.3.2.
As all implementations in this thesis are using signed representation, we
will restrict to signed reductions in the following unless stated differently.
Note that one must not forget to correct the final results to their unsigned
representation. This can be achieved by conditionally adding q depending
on the sign of the value.

Conditional subtraction and addition. In case the absolute value of a is
small, the most straightforward reduction is subtracting (adding) q in case
a > ⌊q/2⌋ (a < ⌊q/2⌋). This gives the canonical signed representative in case
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Algorithm 5 Barrett reduction [Bar86]

Input: q modulus, R = 2n > q
Input: a ∈ Z, ∣a∣ ≤ R

2
, to be reduced

Output: a′ ≡ a (mod q), ∣a′∣ < 3
2
q.

1: t← ⌊a ⌊R
q
⌉ /R⌉

2: return a − qt

∣a∣ < 3/2q. However, when handling secret data one needs to ensure that
this operation is implemented in constant time. If the absolute value of a is
larger than 3/2q, one can apply the add/sub multiple times. However, we
will usually resort to faster reduction techniques discussed as the rest of this
section. Especially after multiplications, this approach is prohibitively slow.

Lazy reduction. Intermediate values are not required to be the canonical
representative. In case q is smaller than the word size, one may perform
multiple arithmetic operations without reducing as one can be sure that
the values will not overflow the datatype used. This is referred to as lazy
reduction as one avoids all redundant reductions. This mostly works for
additions and subtractions, but sometimes also for multiplications.

Range analysis. To make the best use of lazy reduction, one has to care-
fully keep track of possible values at each step of the computation. This is
called range analysis. For larger computations, for example, an FFT (Sec-
tion 2.2.5), by carefully keeping track of possible ranges, one can eliminate
many reductions.

2.3.1 Barrett Reduction

For a value a, the canonical signed representative is a mod± q = a − q ⋅ ⌊a
q
⌉.

Barrett reduction [Bar86] computes an approximation of ⌊a
q
⌉ to obtain a

value close to a mod± q (or exactly a mod± q for some parameters). The

approximation used is ⌊a ⌊R
q
⌉ /R⌉ with R = 2k > q fixed, such that a mod± q ≈

a−q ⋅⌊a ⌊R
q
⌉ /R⌉. The value ⌊R

q
⌉ can be pre-computed, and hence a reduction

consists of a multiplication by ⌊R
q
⌉, a bit shift with rounding, a multiplication

by q, and a subtraction as shown in Algorithm 5.

In general, the reduction result is guaranteed to be within [− 3
2
q, 3

2
q].

However, one usually finds much tighter bounds for concrete parameters.
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Example 16: Let q = 17, R = 256, and hence ⌊R
q
⌉ = 15. Given 72, Barrett

reduction computes a− q ⌊a ⌊R
q
⌉ /R⌉ = 72− 17 ⌊72 ⋅ 15/256⌉ = 72− 17 ⋅ 4 = 4.

Given 78, Barrett reduction computes 78−17 ⋅5 = −7. Trying other values
∣z∣ ≤ R

2
, one finds that the output ranges from −9 to 8 and is, hence, very

close to, but not quite the canonical signed representative.

Example 17: Assume the Kyber modulus q = 3329. Let R = 226, and,

hence, ⌊R
q
⌉ = 20159.

Given, e.g., a = 13370, the Barrett reduction computes 13370−4⋅3329 = 54.
The output range for signed 16-bit values is [−1664,1664], i.e., Barrett
reduction yields the canonical signed representative.

2.3.2 Montgomery Reduction and Montgomery Multi-
plication

Similar to Barrett reduction, Montgomery’s approach is to replace expensive
division by odd q with a cheap division by a power of two. When reducing a
value a (< qR) which coincidentally is a multiple of R = 2k > q, we can simply
store a/R which reduces the size of a by k bits and is cheaply computed.
Montgomery’s idea is to make sure that a is a multiple of R by introducing a
correction step, i.e., we want to find a value t, such that, a− tq is divisible by
R. Montgomery computes t as aq−1 mod R, such that, a − aq−1q mod R =
0. This results in Montgomery reduction as shown in Algorithm 6. In
Montgomery’s paper, this is followed by a conditional subtraction of q to
obtain a value between 0 and q−1. However, the final conditional subtraction
can be left out if the result does not need to be the standard representative.

The above description differs from Montgomery’s [Mon85] original de-
scriptions and from what is commonly described in the broader literature in
the following way: Montgomery proposes a way to multiply by first trans-
forming all operands by multiplying them by R mod q. For example, let a, b
be numbers to be multiplied. We first compute aR mod q and bR mod q.
These values are then called to be in the Montgomery domain or the Mont-
gomery space. After multiplication, we obtain abRR mod q. To obtain a
result in the Montgomery domain, we need to remove the additional R-
factor which we achieve by applying the Montgomery reduction. This will
also reduce the size of the representation. This way of multiplying numbers
is referred to as Montgomery multiplication.

However, what is encountered in real implementations of PQC looks
slightly different: Only one of the two multiplicands is transformed into the
Montgomery domain, such that after one multiplication one obtains a(bR
mod q) which is transformed to ab mod q using one Montgomery reduction.
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Algorithm 6 Montgomery reduction [Mon85]

Input: q modulus, R = 2n > q
Input: −q−1 mod R
Input: a ∈ Z, a < qR
Output: t ≡ aR−1 (mod q),0 ≤ t < 2q

1: t← a(−q−1) mod R
2: t← (a + tq)/R
3: return t

Algorithm 7 Signed Montgomery reduction [Sei18]

Input: q modulus, R = 2n > q
Input: q−1 mod± R
Input: a ∈ Z, a < qR
Output: t ≡ aR−1 (mod q), ∣t∣ ≤ q

1: t← aq−1 mod ±R
2: t← (tq)/R
3: t← ⌊a/R⌋ − t
4: return t

Example 18: Assume we are operating in Z3329 and use R = 216. Hence,
−q−1 mod R = 3327. Now assume we want to multiply two numbers a
and b, e.g., a = 1234 and b = 17.
In the schoolbook approach, we would first compute a′ =
1234 ⋅R mod± q = 27 and b′ = 17 ⋅R mod± q = 2226. After multiplication
a′b′ = 60102, we apply the Montgomery reduction to obtain t = 60102⋅3327
mod R = 9018 and consequently, (a′b′+t⋅q)/R = (60102+9018⋅3329) = 459
which equals abR mod± q. To obtain the result in the normal do-
main, we can apply the Montgomery reduction again, i.e., t = 19765 and
(459 + 19765 ⋅ 3329)/R = 1004 which is the result we were looking for.
However, as explained above it suffices to transform one multiplicand into
the Montgomery domain, e.g., b′ = 17 ⋅R mod q = 2226. After multipli-
cation we have ab′ = 2746884 and apply the Montgomery reduction, i.e.,
t = 18940 and (ab′ + tq) = (2746884 + 18940 ⋅ 3329)/R = 1004.

Another trick was introduced by Seiler [Sei18] which results in a signed
variant of the Montgomery reduction and is shown in Algorithm 7. By
switching to signed arithmetic, it is sufficient to compute the upper half of
tq which is often cheaper than computing the full product. Note that one
also needs to use q−1 rather than −q−1 and consequently a subtraction rather
than addition in the last line.
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Example 19: Revisiting the previous example for Z3329, R = 216, and
q−1 = −3327, a = 1234, and b = 17. When using the second approach of
only transforming the second multiplicand, we get b′ = 17R mod± 3329 =
−1103 and ab′ = −1361102. We first compute t = ab′(−q−1) mod± R =
−20174. Instead of computing tq, it is now sufficient to compute the
upper half (tq)/R = −1024. The last step computes ⌊−1361102/R⌋+1024 =
−20 + 1024 = 1004

Pre-computation. In lattice-based cryptography, in particular, when us-
ing the NTT, it is commonly the case that one of the multiplicands is a
constant value (e.g., a twiddle factor) that is pre-computed. When using
Montgomery multiplication, it is useful to transform those constants into
the Montgomery domain, i.e., store aR mod q rather than a. In that case,
a Montgomery multiplication yields the product in the normal domain di-
rectly and no transformations are needed. This trick was first proposed
in [ADPS16] for lattice-based cryptography and since then can be found in
any fast implementation using NTTs.

2.4 Arm Cortex-M3 and Arm Cortex-M4

The main target architectures throughout this thesis are the Arm Cortex-
M3 and the Arm Cortex-M4 implementing the 32-bit Armv7-M and Armv7E-M

instruction set architectures (ISA) respectively. This section introduces the
features of both architectures which are most relevant when optimizing cryp-
tographic implementations and in particular polynomial multiplication.

NIST has stated that performance will play an important role in the
evaluation of PQC schemes beyond the first round.1 While most submission
teams included optimized Intel implementations (Haswell, usually AVX2)
in their first- and second-round submission packages, implementations for
microcontrollers were rare and were only added later if at all. As a pri-
mary microcontroller optimization target, NIST recommends the use of the
Cortex-M4 architecture with all options included. Consequently, it has re-
ceived the most attention thus far. However, it can be considered a rather
high-end microcontroller and is particularly powerful in terms of available
multiplication instructions and their performance. This dramatically favors
cryptographic schemes heavily relying on multiplications, e.g., in polyno-
mial multiplication. Hence, it is also sensible to evaluate performance on
less powerful microcontrollers. The immediate candidate is the Cortex-M3
which remains widely used and is significantly cheaper than the Cortex-M4.
It implements the Armv7-M ISA and as such is very similar to the Cortex-M4,
but is lacking various extensions in the Armv7E-M ISA.

1https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/BjLtcwXALbA/

Bjj_77pzCAAJ
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We first introduce the features of the Armv7-M ISA which are implemented
by both the Cortex-M3 and Cortex-M4:

Registers. Armv7-M ISA features 16 32-bit registers r0-r15 of which 14
are general purpose and usable by the developer; the other two are
used for program counter (r15) and stack pointer (r13). r14 is the
link register that contains the return address for subroutine calls. After
pushing its value to the stack, one can freely use r14 for computation as
well. According to the Arm ABI [ARM20] r0-r3 are used for passing
arguments to subroutines. If more arguments are needed those go
to the stack. The return value is written to r0. As such r0-r3 are
generally caller-saved registers, while r4-r11 are callee-saved registers,
i.e., the callee has to preserve them to the stack in case they are needed.
r12 is a scratch register and is not required to be preserved.

Pipeline. Processors implementing the Armv7-M ISA implement a very sim-
ple pipeline. For example, the Cortex-M3 and Cortex-M4 have a simple
3-stage pipeline consisting of fetch, decode, and execute stages. This
means that for all instructions, the result is ready after execution fin-
ishes, i.e., can immediately be used by the subsequent instruction. This
dramatically simplifies writing optimal code for this architecture as de-
pendencies between instructions do not introduce additional latency.
One does not need to distinguish between throughput and latency of
instructions.

Barrel shifter. A distinctive feature of the Arm architecture is the barrel
shifter which is also called the flexible second operand. It allows to
shift or rotate the second operand in most data-processing instructions
without adding any latency. For example, add r0, r1, r2, lsl#2

shifts r2 by two to the left, adds it to r1, and stores the result into r0.
This often proves useful for implementing cryptography.

Load and store instructions. There are a plethora of load and store in-
structions available. ldr and str are used to load or store one word
(32-bit). While str takes one cycle (since there is a store buffer), ldr
usually takes two cycles. However, when performing n independent
ldr instructions consecutively, these pipeline together and usually take
n + 1 cycles. There are also instructions for different sizes. ldrb/strb
handle bytes, ldrh/strh handle half-words, and ldrd/strd handle
double-words. For signed data types, there are special load instruc-
tions ldrsb and ldrsh which perform sign extension to 32 bits. There
also exist instructions for loading more than two words: ldm and stm

which require n + 1 cycles for loading/storing n words.

The indexing for both load and store is rather flexible:

• ldr r0, [r1] loads one word from address in r1 into r0.
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• ldr r0, [r1,#4] loads from address r1+4.

• ldr r0, [r1,#4]! loads from address r1+4 and increments r1

by four (called pre-indexed).

• ldr r0, [r1],#4 loads from address r1 and increments r1 by
four (called post-indexed).

• ldr r0, [r1, r2] loads from address r1+r2.

• ldr r0, [r1, r2, lsl#1] loads from address r1+2⋅r2.

Immediates. Standard data-processing instructions can also be used with
a constant as a second operand. mov’s are limited to 16-bit immediates
0x0000XYZW while immediates for other instructions are limited to an
8-bit value 0xXY shifted by some number of bits, or the special patterns
0x00XY00XY, 0xXY00XY00, and 0xXYXYXYXY.

Flags. Instructions do not set flags (e.g., the carry flag) by default. If one
needs the flags, most data-processing instructions have a variant that
sets the flags, e.g., subs instead of sub. The flags can then be used
in other instructions, e.g., adc (add with carry) or branch instructions
like bne (branch if not equal).

Instruction and data alignment. A subset of the Armv7-M instruction
set consists of the 16-bit Thumb instructions, such as simple arith-
metic and memory operations with register parameters. All other in-
structions are encoded in 32 bits. Using 16-bit instructions has an
obvious benefit for code size, but comes at the cost of introducing mis-
alignment: instruction fetching is significantly more expensive when
instruction offsets are not aligned to multiples of four bytes. To com-
bat this, Thumb instructions can be expanded to full-word width using
the .w suffix.

Similar problems occur when accessing data: ldr/str require an extra
cycle when the addresses are unaligned, while ldrd/strd and ldm/stm
do not support unaligned addresses at all.

2.4.1 Arm Cortex-M4

In addition to the Armv7-M ISA features, the Armv7E-M ISA (and the Cortex-
M4 implementing it) comes with additional functionality that is particularly
useful for implementing post-quantum cryptography:

Single-cycle multiplications. Table 2.1 presents an overview of the mul-
tiplication instructions available on the Cortex-M4. Notably, each of
them takes only a single cycle, i.e., the same time as simple data-
processing instructions like additions. This presents a vast advantage
when implementing polynomial multiplications since multiplication of
integers up to 32 bits can be executed in a single cycle.
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Table 2.1: Overview of (a subset of) multiplication instructions in Armv7-M

and Armv7E-M and their respective cycle counts on Cortex-M4 and Cortex-
M3. X, Y ∈ {T,B}

instruction Cortex-M4 cycles Cortex-M3 cycles

32-bit result

mul 1 1
mla 1 2
mls 1 2

64-bit result

umull 1 3–5
smull 1 3–5
umlal 1 4–7
smlal 1 4–7

DSP

smuad 1 –
smlad 1 –
smulXY 1 –
smulXY 1 –
smulwX 1 –
smlawX 1 –

DSP instructions. The Cortex-M4 offers support for digital signal pro-
cessing (DSP) instructions which are also known as single-instruction
multiple-data (SIMD) instructions. DSP instructions allow computing
on multiple data units (e.g., half-words) packed into 32-bit registers.
They can be seen as very basic vector instructions and all execute in
a single cycle. A subset of them is shown in Table 2.1 as well. For
example, smlad r0, r1, r2, r3 interprets r1 and r2 as packed 16-
bit values (rXL and rXH), and computes r0L ⋅ r1L + r0H ⋅ r1H + r3,
i.e., computing two 16-bit multiplications and two 32-bit additions in
a single cycle. There are also DSP instructions that are not multipli-
cations, e.g., uadd16/usub16 performs addition/subtraction on packed
16-bit values.

Floating-point unit. The Arm Cortex-M4 optionally supports a floating-
point unit (FPU). Note that NIST specifically asked for schemes to
be evaluated on Cortex-M4 with all optional features. In case it is
implemented, it comes with 32 single-precision (i.e., 32-bit) floating-
point registers. While floating-point computations are not common
in cryptographic software, one can leverage the FPU differently: Since
moving data between the FPU and the main core only requires a single
cycle per word it is cheaper than accessing memory which requires n+1
cycles for n words. Hence, one can spill intermediate results into the
FPU rather than memory to save some memory accesses.
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For all experiments in this thesis, we used the STM32F407 discovery
board [STM21] which has an Arm Cortex-M4. We also chose this STM32F407
for the pqm4 framework. It comes with 192 kB of SRAM. However, only 128
kB of it is contiguous and the remaining 64 kB is core-coupled memory
(CCM) in a different address range. Hence, in practice one is usually limited
to 128 kB. Another caveat is that the 128 kB is segmented into two blocks
of 112 kB (SRAM1) and 16 kB (SRAM2). While they are mapped consec-
utively in the address space, their performance characteristics are different.
SRAM2 appears to be slightly slower than SRAM1. Consequently, for best
performance, one only uses SRAM1 unless 112 kB SRAM is insufficient. The
discovery board also comes with 1 MB of flash memory which is used for
storing code and constant data. It is also possible to write to flash memory
in case the SRAM is insufficient, but it incurs a vast performance penalty
and requires more care as only full sectors can be written at once. For the
work presented in this thesis, we do not write to flash.

Access to flash is cached in a 1024-byte instruction cache and a 128-
byte data cache and one can optionally enable instruction prefetching. The
STM32F407 runs at a maximum frequency of 168 MHz. However, the flash
memory is much slower than this. Consequently, whenever a cache miss
occurs, one has to wait for up to seven cycles for fetching instructions or
data.

However, this highly depends on the memory controller and the timings
of this discovery board are not representative for what will be used in a
practical deployment. For example, one can use ROM to hold the code and
data which is much faster (and cheaper) than flash memory. To account
for this in the benchmarks, it is common practice to downclock the core to
24 MHz which is the maximum frequency that ensures that access to flash
never causes stalls.

2.4.2 Arm Cortex-M3

The predecessor of the Arm Cortex-M4 is the Arm Cortex-M3. It implements
the Armv7-M ISA and as such is very similar to the Cortex-M4, but is lacking
various extensions in the Armv7E-M ISA. Most notably, it does not have
DSP instructions or a floating-point unit. Table 2.1 gives an overview of
multiplication instructions missing on the Arm Cortex-M3.

Additionally, there is an issue arising when using the umull, smull,
umlal, and smlal instructions. While they are single-cycle (i.e., constant
time) on the Cortex-M4, they are not single-cycle on the Cortex-M3. Instead,
umull and smull take three to five cycles to execute, and umlal and smlal

take four to seven cycles. As there is no authoritative information available
on the early-termination conditions for these variable-time instructions, it
appears dangerous to use these instructions in code that needs to be con-
stant time. The early-termination conditions have been reverse-engineered
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by de Groot [dG15], who showed that there appear to be four properties
that cause an early termination: (1) Arguments being zero; (2) arguments
being smaller than 16-bits; (3) top-heavy arguments (i.e., zero in the least
significant 16-bits); or (4) arguments being a power of two.

Previous work by Großschädl, Oswald, Page, and Tunstall [GOPT09]
evaluated early-terminating multiplication instructions on Armv3 microcon-
trollers. They propose a constant-time multiplication algorithm that still
uses the variable-time multiplication instructions, but avoids any shortcuts
from being taken. Unfortunately, the newer Armv7-M ISA appears to have
vastly more sophisticated shortcuts and it appears unlikely that all shortcuts
can be avoided at a reasonable cost. In addition, the shortcuts identified by
de Groot [dG15] are not actually confirmed by Arm. It is, hence, possible
that not all shortcuts are known or that the shortcuts do not apply to all
Cortex-M3 chips. Therefore, when writing constant-time code those instruc-
tions should be avoided, which means only the multiplication instructions
mul and mla can be used which only compute the lower 32 bits of the 64-bit
product. This presents a challenge for schemes with schemes requiring 32-bit
multiplications, e.g., Dilithium. This issue is addressed in Chapter 4.

As the benchmarking platform, we use an Arduino Due board which
uses the ATSAM3X8E microcontroller. The ATSAM chip was clocked at 16
MHz, which results in a flash access time with zero wait-states.
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Part I

Multiplication for
NTT-friendly Rings
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Chapter 3

Memory-Efficient
High-Speed
Implementation of Kyber
on Cortex-M4

This chapter is based on work published in

Leon Botros, Matthias J. Kannwischer, and Peter Schwabe.
Memory-efficient high-speed implementation of Kyber on Cortex-
M4. In Progress in Cryptology – Africacrypt 2019, LNCS, pages
209–228. Springer, 2019. https://eprint.iacr.org/2019/489

In this chapter, we explore implementations of Kyber [ABD+17] on the
Arm Cortex-M4. At the time of publication, Kyber had advanced to the
second round of the NISTPQC competition. This chapter describes the
implementation of round-one and round-two Kyber. Note that this chapter
presents the results as published in the paper. Later, work by Alkim, Bilgin,
Cenk, and Gérard [ABCG20] improved upon the implementation presented
here. In round three, the Kyber team introduced small parameter tweaks to
the noise distribution, ciphertext compression, and sampling of the public
matrix. The fastest round-three Kyber can be found in pqm4.1

Contribution. The main contribution of this work is to present improved
optimization techniques for the NTTs in Kyber. In comparison to the per-
formance presented in [AJS16], our NTT is more than a factor of 1.8 faster
(when applying the same scaling to accommodate for the different dimen-
sions that was also used in [AJS16]). Most of the techniques we present

1https://github.com/mupq/pqm4/tree/master/crypto_kem/kyber768
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also apply to the NewHope parameters targeted in [AJS16], but some of the
speedups we achieve are specific to the smaller value of q = 7681 (NewHope
uses q = 12289). We also optimize the other performance-critical routines
in Kyber and describe how to reduce RAM usage in Kyber without signifi-
cantly sacrificing performance. As a result, we present the software, that at
the same time has the smallest RAM footprint across all NISTPQC KEM
candidates that have been optimized for the Cortex-M4, and has the lowest
cycle count for the sum of key generation, encapsulation, and decapsulation.

Kyber v2. While this work was in submission, the Kyber team published
various round-two tweaks including the change of q from 7681 to 3329 which
requires changing the NTT. All the optimizations presented in this work
still apply to Kyber v2. We have updated our software to support the new
parameter sets and present the performance results for both versions.

Availability of software. We place all the software described in this chap-
ter into the public domain. It is available at https://github.com/mupq/

nttm4. All source code related to this thesis is also available in a single
archive. See Appendix A. The implementations using the round-two param-
eter sets have also been merged into pqm4 [KPR+].

Organization of this chapter. Section 3.1 gives the necessary background
on the key-encapsulation scheme Kyber. Section 3.2 presents the speed op-
timizations we applied to the NTT which yield a significantly faster imple-
mentation of Kyber. Section 3.3 describes how the fast implementation of
Kyber can be gradually modified to use less stack space with minor and mod-
erate computational overhead. Finally, Section 3.4 presents the performance
results for our implementations and compares them to previous implemen-
tations of Kyber and other round-two candidates in the NIST post-quantum
competition.

3.1 Preliminaries

In this section, we establish notation, briefly recall Kyber and the NTT used
within Kyber.

Notation. We refer to polynomials by regular-font lower-case letters (a),
vectors of polynomials by bold lower-case letters (a) and matrices of poly-
nomials by bold upper-case letters (A). For a polynomial a we use â to

denote the representation of a in the NTT domain and similarly â and Â
are the results of the element-wise application of the NTT to the entries of a
and A. (Random) bitstrings are referred to by the lower-case Greek letters
ρ, σ, and µ. We abstract away from seed expansion to polynomials following
a uniform or centered binomial distribution by just calling SampleUniform

or SampleCBD. Let q be prime and let Zq denote the field Z/qZ. We define
polynomial rings of the form Rq = Zq[x]/(x

n + 1) over this field where n is
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a power of two. We denote by ○ the coefficient-wise multiplication of two
polynomials in the NTT domain with the natural extension to vectors and
matrices. Similarly, let c = a ○ b ∈ Rq be the inner product of a ∈ Rk

q and

b ∈ Rk
q .

3.1.1 Kyber v1

Kyber [BDK+18, ABD+17], which is part of the Cryptographic Suite for Al-
gebraic Lattices (CRYSTALS), is built on the hardness of the Module-LWE
(MLWE) problem. Different from Ring-LWE, MLWE uses a matrix of poly-

nomials in Rq as the public information Â, whereas s and e become vectors

of polynomials. For Kyber, Â is a square k × k matrix and s and e are
k-dimensional vectors. MLWE, therefore, presents a generalization of the
Ring-LWE and the standard LWE problem. While this might have benefits
in terms of security [BDK+18], it is also an advantage for implementations:
One can change the security level by changing the dimension of the ma-
trix, i.e., by changing k. Kyber uses the prime q = 7681 = 213 − 29 + 1 and
Rq = Z7681[x]/(x

256 + 1) for all security levels. Since Rq remains the same
for all security levels it is possible to optimize all security levels of Kyber by
optimizing arithmetic in Rq. Kyber specifies three security levels: Kyber-512,
Kyber-768, and Kyber-1024 which use k = 2,3,4, respectively. Besides k, the
security levels only differ in the parameter of the centered binomial distri-
bution of the secret and error polynomials which is η = 5,4,3 respectively.

Kyber uses a two stage-construction to obtain a CCA-secure KEM: First,
build a CPA-secure encryption scheme, which is called Kyber.CPA and then
use a variant of the Fujisaki-Okamoto transform [FO99] to build the CCA-
secure KEM. Algorithms 8, 9, and 10 illustrate key-generation, encryption,
and decryption of the CPA-secure encryption scheme. For the details of the
CCA transform, we refer the reader to [ABD+17, Alg. 7–9] for the pseu-
docode description. Since the public matrix A is sampled from a uniform
distribution and since the number-theoretic transform of uniform random-
ness is again uniformly distributed, the NTT ofA is omitted and Â is instead
sampled directly in the NTT domain. However, this is not possible for the
secrets and errors, since those need to be small in the normal domain.

Aside from symmetric cryptography used for randomness generation and
hashing (in particular in the CCA transform), the main cost in Kyber is
arithmetic in Rq and even more specifically multiplications. The main cost
of these multiplications is the (forward and inverse) NTT. The number
of NTT operations depends on the parameter k and is 2k,3k + 1, and k +
1 for Kyber.CPA key generation, encryption, and decryption, respectively.
Decapsulation of the CCA-secure KEM includes both Kyber.CPA encryption
and Kyber.CPA decryption and thus requires 4k + 2 NTTs.
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Algorithm 8 CPA KeyGen (v1)

Output: public key pk = (ρ, t′)
Output: secret key sk = ŝ

1: ρ, σ
$
← {0,1}256 × {0,1}256

2: Â ∈ Rk×k
q ← SampleUniform(ρ)

3: s,e ∈ Rk
q ← SampleCBD(σ)

4: ŝ← NTT(s)
5: t← NTT−1(Â ○ ŝ) + e
6: return pk = (ρ,Compress(t)), sk = ŝ

Algorithm 9 CPA Encryption (v1)

Input: public key pk = (ρ, t′)
Input: message m ∈ Rq

Input: randomness µ ∈ {0,1}256

Output: ciphertext (u′, v′)
1: Â ∈ Rk×k

q ← SampleUniform(ρ)

2: r,e1 ∈ R
k
q ← SampleCBD(µ)

3: e2 ∈ Rq ← SampleCBD(µ)
4: r̂← NTT(r)
5: u← NTT−1(ÂT ○ r̂) + e1
6: t← Decompress(t′)
7: v ← NTT−1(NTT(t)T ○ r̂) + e2 +m
8: return (Compress(u),Compress(v))

Algorithm 10 CPA Decryption (v1)

Input: secret key sk = ŝ
Input: compressed ciphertext (u′, v′)
Output: message m ∈ Rq

u← Decompress(u′)
v ← Decompress(v′)
return m← v −NTT−1(ŝT ○NTT(u))
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Algorithm 11 CPA KeyGen (v2)

Output: public key pk = (ρ, t̂)
Output: secret key sk = ŝ

1: ρ, σ
$
← {0,1}256 × {0,1}256

2: Â ∈ Rk×k
q ← SampleUniform(ρ)

3: s,e ∈ Rk
q ← SampleCBD(σ)

4: t̂← Â ○NTT(s) +NTT(e)
5: return pk = (ρ, t̂), sk = ŝ

Algorithm 12 CPA Encryption (v2)

Input: public key pk = (ρ, t̂)
Input: message m ∈ Rq

Input: randomness µ ∈ {0,1}256

Output: ciphertext (u′, v′)
1: Â ∈ Rk×k

q ← SampleUniform(ρ)

2: r,e1 ∈ R
k
q ← SampleCBD(µ)

3: e2 ∈ Rq ← SampleCBD(µ)
4: r̂← NTT(r)
5: u← NTT−1(ÂT ○ r̂) + e1
6: v ← NTT−1(t̂T ○ r̂) + e2 +m
7: return (Compress(u),Compress(v))

The Number Theoretic Transform. First-round Kyber uses a complete
(8 layer) negacyclic NTT for q = 7681 and n = 256 as described in Sec-
tion 2.2.4. It is usually implemented using Cooley–Tukey butterflies for
NTT and Gentleman–Sande for NTT−1 as described in Section 2.2.5.

3.1.2 Kyber v2

In the process of writing the paper underlying this chapter, the second round
of NIST began and the Kyber team published an updated Kyber specifica-
tion [ABD+17]. We will in the following refer to this updated version as
Kyber v2.

The main design decision for the second round of the NIST competi-
tion was to remove the compression of the public key. To compensate for
the increased bandwidth requirement, the Kyber team decided to reduce the
value of q from 7681 to 3329, a choice that was enabled by the observation
from [LS19] that this value of q also supports very fast NTT-based multipli-
cation of polynomials. Another consequence of the decision to not compress
public keys is that public keys can now be transmitted in the NTT domain,
which saves an NTT operation in encryption (and in the re-encryption dur-

55



ing decapsulation of the CCA-secure KEM). Finally, the smaller value of q
also requires smaller noise to achieve the same security level. This is why
the parameter η of the centered binomial distribution changed to η = 2 for
all security levels; note that this change is hidden by our high-level view
of SampleCBD. The resulting key-generation and encryption algorithms are
given in Algorithm 11 and Algorithm 12; decapsulation is the same as for
the round-one version in this high-level perspective.

From a computational point of view, the most interesting aspect of the
changes is the change of the definition of the NTT. In the first-round version
of Kyber, q was chosen such that Zq contains 512-th roots of unity. As a
consequence, the negacyclic NTT of elements of Rq is a vector of 256 degree-
zero polynomials (i.e., scalars). In the second-round version of Kyber, q is
chosen such that Zq contains 256-th roots of unity, but not 512-th roots of
unity. As a consequence, an incomplete (7 layer) NTT has to be used as
introduced in Section 2.2.7.

3.1.3 Arm Cortex-M4

Our target platform is the Arm Cortex-M4, which NIST recommended as
the reference platform for evaluation of post-quantum candidates on micro-
controllers. For a detailed introduction of the Arm Cortex-M4, we refer to
Section 2.4.1.

3.2 Optimizing for Speed

In this section, we describe the optimizations we apply to speed up the
computation of Kyber on the Arm Cortex-M4. Optimizations targeting the
reduction of RAM usage will be presented in Section 3.3. The starting point
of our optimization efforts is the optimized implementation for the Cortex-
M4 by the Kyber authors [ABD+], which is the same as the C reference
implementation except for a hand-optimized NTT operation and which is
included in the pqm4 framework [KPR+].

3.2.1 Link-Time Optimization

While experimenting with the Kyber implementation from [ABD+], we real-
ized that its performance is heavily penalized in pqm4 because a number of
small functions (in particular modular reductions) are implemented in dif-
ferent files than where they are used. Since pqm4 compiles all source files
separately to object files, the compiler cannot inline those functions, which
creates a large overhead from function calls. A simple, but not very elegant
solution would be to place all source code in one large file and this indeed
results in a speedup of about 5%.
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A similar behavior can be achieved by adding the link-time optimization
compiler flag -flto, which adds additional information in object files to
allow optimization when those are linked together. Since -flto consistently
improves performance for implementations of Kyber, we use it throughout
our experiments.

We tried adding -flto to pqm4 [KPR+] as a default option. However, the
benchmarks show that not all schemes benefit from -flto. Some schemes
get significantly slower, while others have an up to 60% increase in stack
consumption. Therefore, -flto was not turned on by default in pqm4.

3.2.2 Speeding up the NTT

In the following, we describe our optimization strategy for the NTT, which
includes a combination of known techniques with new micro-architecture-
specific improvements.

Representation of polynomials. Polynomials in Rq have 256 coefficients
in Zq, where q is the 13-bit prime 7681 (or 3329 for Kyber v2). It is natural
to represent polynomials as an array of length 256 of 16-bit integers. In-
spired by [Sei18] and unlike the implementation by the Kyber authors or the
optimized NewHope implementation described in [AJS16], we use an array
of signed 16-bit integers to represent elements of Rq. We will later discuss
the effect of this choice on modular reductions; one immediate advantage of
using signed representation is that during subtractions in Zq we do not have
to worry about underflows. Compared to using unsigned integers we thus
trivially save an addition of a multiple of q before subtractions.

Merging NTT layers. Similar to, e.g., [GOPS13] and [AJS16], we merge
several layers of the NTT transformation, i.e., we load four coefficients into
registers at once, perform four butterfly operations on them, and store them
back. This drastically reduces the number of loads and stores. However, it
turns out that merging three layers of the NTT as proposed in [AJS16] is
not optimal, since there are not enough registers to fit the constants required
in the Montgomery and Barrett reductions (see below). In [AJS16] this is
solved by reloading the constants for each butterfly, but the cost for these
loads is larger than the savings from fewer loads and stores of coefficients.
We instead merge only two layers which allows us to still keep all constants
in registers and still save 50% of load and store operations.

Pre-computation of twiddle factors. Like most speed-optimized NTT
implementations before, we pre-compute all powers of the root of unity and
store those in flash. For more efficient modular reduction after multiplication
by the twiddle factors, we follow an approach first introduced in [ADPS16]
and store twiddle factors in Montgomery representation [Mon85]. More
specifically, our optimizations are largely inspired by the refined approach
described in [Sei18] and we use the same Montgomery factor β = 216.
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Algorithm 13 Original unsigned Montgomery reduction [ABD+]; using
Montgomery factor β = 218.

Input: a (32 bit)
Output: reduced a (16 bit)

1: mul t, a, q−1

2: and t, #0x3ffff
3: mla a, t, q, a ▷ a← a + t ⋅ q
4: lsr a, #18

Algorithm 14 Signed Montgomery reduction (this work, adapted
from [Sei18]); using Montgomery factor β = 216.

Input: a (32 bit)
Output: reduced a (16 bit)

1: smulbb t, a, q−1 ▷ t← (a mod β) ⋅ q−1

2: smulbb t, t, q ▷ t← (t mod β) ⋅ q
3: usub16 a, a, t ▷ atop ← ⌊

a
216
⌋ − ⌊ t

216
⌋

We then reorder the twiddle factors in our table such that they can
be picked up sequentially in the NTT computation; increasing the pointer
to the twiddle factors after each load is free in Armv7E-M. Since we need
three twiddle factors per two (merged) layers, we pack two of them into
one register, which saves one load operation and one register. The twiddle
factors are only used in multiplications with 16-bit coefficients which allows
using smulbb and smulbt to multiply by the upper or the lower twiddle
factor inside that register.

Montgomery reductions. After the multiplication in each butterfly, we
need to reduce the 32-bit product to 16 bits. This is done using a signed
Montgomery reduction tailored to q. It turns out that the signed Mont-
gomery reduction as proposed in [Sei18] can be implemented in three clock
cycles (Algorithm 14) on the Arm Cortex-M4 and as such is one clock cycle
faster than the unsigned Montgomery reduction in [ABD+] (Algorithm 13).2

Unrolling. As usual, we fully unroll the outer loop of the NTT iterating
over the NTT levels. Additionally, to save an additional register, we unroll
one of the inner loops as well. Depending on the current level, we unroll the
loop with the least iterations to minimize the code-size increase. While this
is also saving a small number of cycles, the performance gains by having an
additional register are much more significant.

Packing. Since q is well below 16-bits, polynomials are usually stored as
int16 t arrays. Since our target platform is a 32-bit architecture it seems

2Alkim et al. [ABCG20, Algorithm 9] further improved this using smulbb, smlabb with
−q−1 as the constant.
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wasteful to only load one 16-bit coefficient into 32-bit registers. Loading and
storing two coefficients at once saves half of the load and store operations.
However, the available vector instructions in Armv7E-M are quite limited. For
example, there is no dedicated instruction performing two 16-bit multiplica-
tions yielding two 32-bit results. Still, some operations can be performed in
parallel. Therefore, we implement double butterflies, i.e., butterflies which
operate on packed arguments and return a packed result. By doing this,
we can, for example, perform two additions and subtractions in one clock
cycle using uadd16 and usub16. Unfortunately, some operations (e.g., the
Barrett reduction) are more than twice as expensive to implement on packed
arguments. Nonetheless, we achieve a speed-up in every butterfly by using
packing.

Instruction alignment. Since some instructions available in Armv7E-M are
16-bit Thumb instructions, it is possible that a single Thumb instruction
unaligns many following 32-bit Arm instructions which results in a vast
performance penalty. Therefore, we make sure our code is as aligned as
possible. This can be done by aligning the start of the function using .align
2 (.align n aligns to 2n bytes) and padding each sole Thumb instruction
to 32-bit using the .w suffix.

Recent improvements proposed in [LS19]. Very recent work proposed
yet another more efficient NTT in AVX2 [LS19] which can also be adapted
to Kyber. The major speed-up that [LS19] achieved over [Sei18] in the NTT
stems from further optimizing the Montgomery reduction. Lyubashevsky
and Seiler save an additional multiplication by avoiding the multiplication by
q−1 and instead multiplying each of the pre-computed twiddle factors by q−1.
This is possible since each product of a polynomial coefficient ai by a twiddle
factor is implemented through two separate multiplication instructions, one
computing the low half and one computing the high half of the product.
Since the low half of the product is multiplied by q−1 mod β inside the
Montgomery reduction, one can pre-compute the product of q−1 and the
corresponding twiddle factor and use this constant for the low product. This
saves another multiplication instruction in the Montgomery reduction but
requires storing twice as many pre-computed twiddles.

Unfortunately, this does not carry over to our Cortex-M4 implementation
since the low and high products are not computed separately, but in a single
instruction. Doing these multiplications separately with different constants
would be possible, but would require an additional clock cycle and, thus,
would not save anything.

3.2.3 Optimizing Matrix-Vector Multiplication

Besides the NTT, another fairly expensive operation in Kyber is the matrix-
vector multiplication in line 5 of Algorithm 8 and line 5 of Algorithm 9. We
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also optimize this operation in C. Since this optimization depends on the
stack-reduction strategy, we describe it in Section 3.3.

3.2.4 Optimized Keccak

As we will see in Subsection 3.4.3, even before our optimization of the NTT
and matrix-vector multiplication, most of the cycles of the Kyber compu-
tation are spent in hashing and pseudorandom-number generation, which
both boil down to the Keccak permutation [BDPA11]. For all derivatives of
Keccak inside Kyber (i.e., SHA3-256, SHA3-512, SHAKE-128, and SHAKE-
256) we use the highly optimized code from the eXtended Keccak Code
Package [DHP+], which is also included in the pqm4 framework.

3.2.5 Kyber v2

Various changes in the updated Kyber specification have an impact on per-
formance, but all the optimizations presented above still apply with minor
modifications: The smaller q allows being lazier with Barrett reductions in
the NTT and NTT−1 which improves performance. Additionally, both the
NTT and NTT−1 only require seven instead of eight layers of butterfly op-
erations which saves roughly 1/8 of the cycles. However, the multiplication
of polynomials in the NTT domain is no longer pointwise and consequently
becomes more expensive.
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3.3 Decreasing Stack Usage

In addition to being fast, NTT-based multiplication provides the additional
benefit of being entirely in-place; no additional stack space is needed. This
presents a major advantage compared to, for example, recent implemen-
tations of Z2k[x]/(f(x)) (Chapter 5) which uses a combination of Toom-
Cook [Too63, Coo66] and Karatsuba’s [KO63] algorithm which comes with
a rather large memory footprint. The existing implementation of the NTT
in Kyber is already in-place and the changes we applied to them did not
change this. Therefore, we also optimized the C code implementing the re-
mainder of the scheme to use less stack space, making this implementation
of Kyber particularly suitable for memory-constrained devices. We analyzed
which stack-space requirements can be eliminated at no or very little com-
putational cost, i.e., without re-computations.

Changes to Kyber.CCAKEM. Kyber uses an FO-transformation to trans-
form a CPA-secure PKE into a CCA-secure KEM. The reference implemen-
tation of decapsulation does so by first decrypting the ciphertext and then
re-encrypting the obtained plaintext. This produces a ciphertext which is
then compared to the original. Only if they are equal, the shared secret key
is returned. We eliminate this additional ciphertext on the stack by inlin-
ing the comparison into CPA encryption in a constant-time manner. This
function is only used for re-encrypting and does not return a ciphertext,
but rather a boolean value that indicates if the ciphertexts were equal. The
actual re-encrypted ciphertext is computed and compared byte per byte.
This not only saves a considerable amount of stack space but also slightly
improves the speed.

Changes to Kyber.CPAPKE. The remaining changes were made in the
C code of Kyber’s CPA key generation (Algorithm 8), encryption (Algo-
rithm 9), and decryption (Algorithm 10), where we reduced the number of
polynomials that are kept in memory at the same time. In the reference
implementation of key generation and encryption, first, the public matrix Â
of k × k polynomials is sampled directly in the NTT domain and stored in
memory. Then, vectors of noise polynomials are sampled from a centered
binomial distribution. Finally, all computations are performed. We opti-
mize this by merging the sampling and the computations, i.e., we sample
the required arguments on the fly where possible.

Generating and multiplying Â. Since a polynomial in Kyber has 256
coefficients each represented by 16 bits, storing one polynomial consumes
512 bytes of memory. Because the size of the matrix Â grows quadratically
with k, its k2 polynomials account for the majority of Kyber’s stack usage.
However, the matrix Â is only required once for matrix-vector pointwise
multiplication and accumulation (see, e.g., line 4 of Algorithm 8).
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The memory footprint can be reduced using an approach that reduces
the storage requirements of Â to only the state of the extendable output
function for one polynomial of Â at a time, allowing us to generate a small
number of coefficients for multiplication.

In this approach, the polynomials of output vectors t and u are serial-
ized one at a time. The vector operands ŝ and r̂ are used k times in the
matrix-vector multiplication. Therefore, we decided to keep those in mem-
ory throughout the computation. Only maintaining one polynomial of those
in memory would require re-sampling and transforming them to the NTT
domain k times which would introduce a significant performance penalty.

For key generation, we require k + 1 polynomials, for encryption, we
require k + 1 polynomials, and for decryption, we only use 3 polynomials
regardless of k, but since decapsulation calls both CPA encryption and de-
cryption, the stack usage is determined by encryption.

Adding noise. The noise polynomials e, e1, and e2 are only used once
and are sampled from a centered binomial distribution using an extendable
output function (XOF). We sample the coefficients of those polynomials on-
the-fly without having to store the entire polynomials.

Kyber v2. Our stack optimizations are mostly unaffected by the algorithmic
tweaks made by the Kyber team in round two. However, in key generation
(Algorithm 11), the noise vector e needs to be in the NTT domain. Since
the NTT transformation requires the entire polynomial e in memory; the
on-the-fly sampling is no longer possible. Therefore, key generation requires
an additional polynomial, i.e., k + 2 in total.

3.4 Results

For our experiments, we use the STM32F407 together with an extended
version of the pqm4 [KPR+] benchmarking framework. Particularly all cycles
counts and stack measurements are those reported by pqm4, i.e., running the
core at a low frequency of 24 MHz to not be impacted by memory wait states
due to a slow memory controller. This allows comparing those numbers to
boards different from the STM32F407. We extend pqm4 to also report cycles
spent in hashing. Similar to pqm4 we use arm-none-eabi-gcc at version 8.2.0
and set the optimization option to -O3.

In this section, we present our results for Kyber. We start by bench-
marking the NTT and polynomial multiplication in isolation and then re-
port results for key generation, encapsulation, and decapsulation for all pa-
rameter sets of Kyber. All numbers reported in this section refer to the
CCA-secure Kyber. Note that the results reported in this chapter are those
reported in the original paper. Subsequent work by Alkim, Bilgin, Cenk,
and Gérard [ABCG20] improved upon it. We refer to pqm4 for up-to-date
results.
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Table 3.1: Cycle counts for NTT, NTT−1, and the full polynomial multi-
plication (NTT−1(NTT(a) ○ NTT(b))). We outperform the current speed
record by more than a factor of two for NTT and NTT−1. The parameter
changes in Kyber v2 further speed up the polynomial multiplication.

implementation NTT NTT−1 polymul

Kyber v1
[ABD+] 21 855 23 622
This work 9 452 10 373 32 576

Kyber v2 This work 7 725 9 347 27 873

3.4.1 NTT and Polynomial Multiplication

Table 3.1 presents our new speed records for the computation of the NTT.
Our optimized Kyber v1 NTT and NTT−1 are more than a factor of two
faster than the previous speed records [ABD+].

Combining NTT and NTT−1 to perform a full polynomial multiplica-
tion in Rq, i.e., computing NTT−1(NTT(a) ○NTT(b)) requires 32 576 clock
cycles. In Kyber v2 only seven out of eight layers of the NTT are com-
puted, which reduces the run-time to roughly 7/8 of the cycles. Computing
NTT−1(NTT(a) ○NTT(b)) is considerably (14%) faster.

The fastest multiplication in Z213[x]/(x
256+1) using Toom–Cook [Too63,

Coo66] and Karatsuba [KO63] described in Chapter 5 requires 38 215 clock
cycles.3 We outperform this by 27%. More importantly, Toom–Cook and
Karatsuba multiplication require a significant amount of additional memory
for intermediate values. For Z213[x]/(x

256 + 1), the Toom–Cook requires
3 800 bytes of intermediate values which excludes the non-reduced result
polynomial of 1 022 bytes4. Our polynomial multiplication is in place.

In comparison to the performance presented in [AJS16], our NTT is
more than a factor of 1.8 faster (when applying the same scaling to accom-
modate for the different dimensions that was also used in [AJS16]). Most of
the techniques we present also apply to the NewHope parameters targeted
in [AJS16], but some of the speedup we achieve is specific to the smaller
value of q (NewHope uses q = 12289).

3.4.2 Kyber.CCA

Table 3.2 presents the cycle counts for all our implementations in comparison
to the existing speed records [ABD+]. By just turning on -flto, we achieve
speedups of 4 − 7% mainly due to in-lining modular reductions. The speed-
ups achieved by applying our speed optimizations are 14−23% and, thus, go

3Note that this implementation was later outperformed by using NTTs as described
in Chapter 6.

42n − 1 coefficients of two bytes each

63



Table 3.2: Cycle counts for all three security levels of Kyber
compared to [ABD+]. Link time optimization does benefit Ky-
ber consistently, but our optimizations go far beyond. Kyber
v2 is even faster, mainly due to algorithmic changes.

scheme impl. KeyGen Encaps Decaps
cycles cycles cycles

Kyber-512 (v1)
[ABD+] 666k 904k 934k
ltoa 637k 866k 881k
This work 575k 763k 730k

Kyber-512 (v2) This work 499k 634k 597k

Kyber-768 (v1)
[ABD+] 1 098k 1 384k 1 417k
ltoa 1 048k 1 325k 1 339k
This work 946k 1 167k 1 117k

Kyber-768 (v2) This work 947k 1 113k 1 059k

Kyber-1024 (v1)
[ABD+] 1 730k 2 083k 2 134k
ltoa 1 630k 1 970k 1 994k
This work 1 483k 1 753k 1 698k

Kyber-1024 (v2) This work 1 525k 1 732k 1 653k
a Only adding the compiler flag -flto.

far beyond what the compiler achieves. Our implementations of the round-
one variants of Kyber achieve the lowest cycle counts reported.

As a result of the optimizations described in Section 3.3, we were able
to reduce the stack usage of all Kyber variants significantly (see Table 3.3).
Prior to our optimizations k2 + 3k, k2 + 4k + 3, and 2k + 2 polynomials were
used by key generation, encryption, and decryption respectively. Our opti-
mizations were able to reduce this to k + 1 for all. Therefore, we notice a
more considerable reduction for the higher security levels of Kyber.

Kyber v2. With our optimizations applied to the round-two versions of Ky-
ber, the cycle counts are comparable to round one if not faster. Similarly,
stack size reductions are very comparable with the reductions made in round
one. The exception is the key generation procedure which uses k + 2 poly-
nomials instead of k + 1 as described in Section 3.3.

3.4.3 Profiling

Table 3.4 contains the profiling information of our implementations for all
parameter sets of Kyber v1 and Kyber v2. We observe the following:

Dominance of hashing. Note that in the reference implementation already
54% to 69% of execution time is spent in highly hand-optimized assembly im-
plementation of the Keccak permutation. This limits the speed-ups to be ob-
tained since there is nothing or very little to be gained for this large fraction
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Table 3.3: Stack usage for all three security levels of Kyber comparing our
optimized implementations to [ABD+]. For our stack-optimized implemen-
tation we notice a significant decrease of stack usage across all variants. The
stack use of key generation of version 2 is roughly one polynomial (512 bytes)
larger than in version 1. This is due to the choice of Kyber’s authors to rep-
resent the public key in the NTT domain.

scheme impl. KeyGen Encaps Decaps
bytes bytes bytes

Kyber-512 (v1)
[ABD+] 6 448 9 112 9 920
This work 2 632 2 672 2 736

Kyber-512 (v2) This work 3 136 2 720 2 744

Kyber-768 (v1)
[ABD+] 10 544 13 720 14 880
This work 3 072 3 120 3 176

Kyber-768 (v2) This work 3 648 3 232 3 248

Kyber-1024 (v1)
[ABD+] 15 664 19 352 20 864
This work 3 520 3 568 3 624

Kyber-1024 (v2) This work 4 160 3 752 3 776

of the execution time. Our implementations spend the same time in hashing
as the previous implementation, but this accounts for 64% to 81% of the to-
tal cycle counts. This confirms what previous work concluded [SBGM+18]:
Post-quantum key-encapsulation schemes are vastly dominated by hashing,
and having a hardware-accelerated Keccak permutation would speed up the
majority of schemes significantly. Kyber v2 spends vastly less time in Keccak
which is due to the change of the parameters q and η. Both allow for a more
efficient sampling routine that uses less SHAKE output.

NTT. Prior to our optimizations 10% to 24% were spent in the NTT and
NTT−1. We speed up those parts of the code by more than a factor of two
and, consequently, they only account for 5% to 14% of the cycles in our
optimized implementations.

3.4.4 Comparison to other PQC Schemes

Compared to other implementations of NISTPQC KEM candidates on the
Arm Cortex-M4 (Table 3.5), our Kyber implementation has both the small-
est memory footprint and lowest cycle count for the sum of key generation,
encapsulation, and decapsulation. Both our stack-optimized implementa-
tions of Kyber-768 outperform all other implementations by large margins
in terms of stack usage. We also note a performance gap between the fastest
implementation of Saber, reported in [KRS19] (Chapter 5), and the stack-
optimized implementation [KBMSRV18], whereas our implementations do
not suffer any slow-down due to our stack optimizations.
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Table 3.4: Profiling of Kyber before and after applying all our optimizations.
The run-time is vastly dominated by hashing. The cycles spent in NTT
reduced notably. Only a small portion of the run-time is still spent in non-
optimized code.

impl. total Keccak NTT NTT−1

Kyber-512 (v1)

[ABD+]
K: 666k 68% 7% 7%
E: 904k 66% 10% 8%
D: 934k 54% 14% 10%

This work
K: 575k 79% 3% 4%
E: 763k 78% 5% 4%
D: 730k 69% 8% 6%

Kyber-512 (v2) This work
K: 499k 71% 6% 0%
E: 634k 74% 2% 4%
D: 597k 64% 5% 6%

Kyber-768 (v1)

[ABD+]
K: 1 098k 69% 6% 6%
E: 1 384k 67% 9% 7%
D: 1 417k 56% 14% 8%

This work
K: 946k 80% 3% 3%
E: 1 167k 79% 5% 4%
D: 1 117k 71% 8% 5%

Kyber-768 (v2) This work
K: 947k 72% 5% 0%
E: 1 113k 75% 2% 3%
D: 1 059k 67% 4% 4%

Kyber-1024 (v1)

[ABD+]
K: 1 730k 69% 5% 5%
E: 2 083k 67% 8% 6%
D: 2 134k 59% 12% 7%

This work
K: 1 483k 81% 3% 3%
E: 1 753k 80% 4% 3%
D: 1 698k 74% 7% 4%

Kyber-1024 (v2) This work
K: 1 525k 73% 4% 0%
E: 1 732k 75% 2% 3%
D: 1 653k 69% 4% 3%
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Table 3.5: Performance results of Kyber-768 in comparison to other round-
two candidates of NISTPQC optimized for the Cortex-M4. Prior to this
work the fasted scheme in terms of encapsulation was NTRU-HRSS, whereas
key generation is (still) fastest for Saber. The best memory footprints were
achieved by R5ND 3PKEb and the memory optimized variant of Saber. Note
that Saber, R5ND 3PKEb, and NTRU-KEM-743 are claiming NIST security
level 3, whereas NTRU-HRSS claims NIST security level 1.

scheme impl. runtime stack usage
cycles bytes

Kyber-768 (v1) This work
K: 946k K: 3 072
E: 1 167k E: 3 120
D: 1 117k D: 3 176

Kyber-768 (v2) This work
K: 947k K: 3 648
E: 1 113k E: 3 232
D: 1 059k D: 3 248

Frodo-AES128 [BFM+18]
K: 41 681k K: 31 116
E: 45 758k E: 51 444
D: 46 720k D: 61 820

Frodo-cSHAKE128 [BFM+18]
K: 81 300k K: 26 272
E: 86 255k E: 41 472
D: 87 212k D: 51 848

Saber

[KRS19]a
K: 902k K: 13 248
E: 1 173k E: 15 528
D: 1 217k D: 16 624

[KBMSRV18]b
K: 1 165k K: 6 931
E: 1 530k E: 7 019
D: 1 635k D: 8 115

R5ND 3PKEb [SBGM+18]c
K: 1 032k K: 6 796
E: 1 510k E: 8 908
D: 1 913k D: 4 296

NewHopeCCA1024 [KPR+]a,d
K: 1 221k K: 11 152
E: 1 902k E: 17 448
D: 1 926k D: 19 648

NTRU-HRSS [KRS19]a
K: 145 986k K: 23 396
E: 406k E: 19 492
D: 827k D: 22 140

NTRU-KEM-743 [KRS19]a
K: 5 203k K: 25 320
E: 1 603k E: 23 808
D: 1 884k D: 28 472

a Re-benchmarked in SRAM1 (see beginning of Section 3.4)
b Optimized for stack consumption
c Since R5ND 3PKEb does not report any stack usage, we report the numbers
from https://github.com/mupq/pqm4/pull/16

d NTT assembly implementation from [AJS16] with reference implementation
in pqm4 [KPR+]
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Chapter 4

Compact Dilithium
Implementations on
Cortex-M3 and Cortex-M4

This chapter is based on work published in

Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan
Sprenkels. Compact Dilithium implementations on Cortex-M3
and Cortex-M4. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2021(1):1–24, 2020. https://eprint.

iacr.org/2020/1278

It presents new speed records for the digital signature scheme and NIST-
PQC finalist Dilithium on Arm Cortex-M3 and Arm Cortex-M4. At the time
of publishing, Dilithium had just advanced to the third round of the NIST-
PQC competition, and, hence, the parameter changes in the third round
were not yet known. The core implementation techniques introduced here
directly carry over to the new parameter sets. However, the performance
results presented here are for the second-round parameters. Updated imple-
mentations have been merged into pqm4.1

Together with Falcon [PFH+17], Dilithium [LDK+17] is one of the two
remaining lattice-based signature schemes in the NISTPQC competition in
round three. In round two, there was an additional lattice-based signature
scheme called qTesla [BAA+17]. However, qTesla was not selected to advance
to the third round.

Dilithium and qTesla are conceptually very similar; they are both Fiat-
Shamir-with-abort schemes [Lyu09] based on {R,M}LWE and {R,M}SIS.

1https://github.com/mupq/pqm4/pull/178
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However, Dilithium has significantly smaller keys, smaller signatures, and
better performance. For example, qTESLA-p-I public keys are 14 880 bytes
and signatures are 2 592 bytes, while Dilithium2 has 1 184-byte public keys
and 2 044 byte signatures albeit providing the same level of (claimed) secu-
rity. Note that qTesla initially also proposed heuristic parameter sets which
achieved sizes and performance closer to Dilithium, but the qTesla team with-
drew those parameter sets because Lyubashevsky and Schwabe presented a
complete break allowing universal forgeries.2

Falcon, on the other hand, is a hash-and-sign signature scheme based on
NTRU lattices. It has smaller public key and signature sizes than Dilithium
while being competitive in terms of computational performance.

Dilithium, together with the finalist key-encapsulation mechanism Ky-
ber [ABD+17], forms the Cryptographic Suite for Algebraic Lattices (CRYS-
TALS). Both Dilithium and Kyber use structured lattices to allow fast arith-
metic and compact key, signature, and ciphertext sizes. Both make use of the
polynomial ring Zq[x]/(x

256+1) which enables efficient polynomial multipli-
cation using the number theoretic transform (NTT). However, Dilithium is
using a 23-bit prime modulus, while Kyber is using a 12-bit prime modulus
which means that implementations of polynomial arithmetic differ signifi-
cantly between Kyber and Dilithium.

While there is a vast literature on the implementation of lattice-based
key-encapsulation schemes, the coverage of lattice-based signatures is still
limited and more research is needed. We advance the field by presenting
optimized implementations of Dilithium for the Arm Cortex-M3 and Arm
Cortex-M4. In this work, aside from optimizing for speed, we also optimize
for stack usage.

The Cortex-M4 has been declared the main microcontroller optimization
target for the post-quantum competition by NIST. Hence, the majority of
schemes in the third round have an optimized implementation for that ar-
chitecture. However, its smaller brother, the Cortex-M3, is also still widely
deployed.

The Cortex-M4 provides various advanced instructions for optimizing
cryptographic schemes which might be one of the reasons why it has received
much attention from the cryptographic community.

However, the Cortex-M3 comes with one feature which does appear in-
teresting from an implementation and also from a side-channel perspective:
Different from the Cortex-M4, it does not have a constant-cycle 32-bit mul-
tiplier producing a 64-bit result, but only a variable-cycle one. Therefore, an
implementation of any scheme working on large (secret) integers compiled
for the Cortex-M3 is most likely going to leak information about these secret
integers via timing side-channels. This has been shown to pose a problem
for cryptographic schemes in preceding Arm architectures [GOPT09]. This

2https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/HHnavSx4f5Q/

fRsujb9ACgAJ
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is particularly interesting for Dilithium, because of the large prime modu-
lus q = 8380417. If existing implementations for Dilithium are simply com-
piled for the Cortex-M3, they are very likely to be vulnerable to timing
attacks within the polynomial multiplication. In this chapter, we build a
safe constant-time implementation of Dilithium on the Cortex-M3. That is,
the execution time of the algorithm is invariant over all the secret values in
the algorithm.

Contribution. The contribution of this chapter is fourfold: First, we fur-
ther optimize the existing Dilithium implementation for the Cortex-M4 by
switching to a signed polynomial representation and optimizing more parts
of the scheme. Second, we present the first constant-time implementation of
Dilithium on the Cortex-M3. Third, we present various stack consumption
and speed trade-offs for the signing procedure of Dilithium. Due to the iter-
ative nature of the signing procedure, there exist interesting implementation
choices. Finally, as a by-product, we provide Cortex-M3 implementations
of the lattice-based key-encapsulation schemes Kyber and NewHope. These,
most notably, consist of constant-time implementations of the NTT and
NTT−1 operations in those schemes.

Code. The implementations of Dilithium, Kyber, and NewHope that are
the result of this work are in the public domain and available at https:

//github.com/dilithium-cortexm/dilithium-cortexm. All source code
related to this thesis is also available in a single archive. See Appendix A.

Related Work. Previous speed-records for Dilithium on the Cortex-M4
were set by Ravi, Gupta, Chattopadhyay, and Bhasin [RGCB19] and were
built upon work by Güneysu, Krausz, Oder, and Speith [GKOS18]. A
masked implementation of a modified Dilithium on Cortex-M3 is presented
in [MGTF19]. Migliore, Gérard, Tibouchi, and Fouque propose to use a
power-of-two modulus instead of the original prime modulus to allow for
cheaper masking. However, strictly speaking, they do not implement the
Dilithium scheme as it was submitted to NIST. There is an extensive line
of work for Cortex-M4 implementation of lattice-based key-encapsulation
mechanisms [AJS16, ABCG20, KBMSRV18, BMKV20]; see also Chapter 3,
Chapter 5, and Chapter 6. Similar studies exist on hardware implementa-
tions and instruction set extensions [BMTK+20, BUC19, AEL+20].

Other lattice-based signatures have been implemented on the Cortex-M4:
Pornin presents a fast constant-time implementation of Falcon on the Cortex-
M4 [Por19]; In 2019, [GR19] presented a masked implementation of qTesla;
More recently, [WTJ+20] presented a hardware-accelerated implementation
of qTesla.

Structure of this chapter. Section 4.1 introduces the lattice-based signa-
ture scheme Dilithium. In Section 4.2 we present some improvements for the
Cortex-M4. Section 4.3 presents the first constant-time implementation of
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Table 4.1: Dilithium parameter sets

Name NIST level (k, ℓ) η β ω ∣pk∣ ∣sig∣
Dilithium2 1 (4,3) 6 325 80 1184 2044
Dilithium3 2 (5,4) 5 275 96 1472 2701
Dilithium4 3 (6,5) 3 175 120 1760 3366

Dilithium on the Cortex-M3. Section 4.4 presents various trade-offs in terms
of stack consumption and speed of Dilithium implementations. Section 4.5
presents the performance results for both implementations. In Section 4.6,
we provide performance results for Kyber and NewHope on the Cortex-M3
which are a by-product of this work.

4.1 Preliminaries

4.1.1 Dilithium

Dilithium [DKL+18, LDK+17] is a digital signature scheme based on the hard-
ness of the MLWE and the MSIS lattice problems. It is one of the three
digital signature finalists of the NIST Post-Quantum Competition [NIS16].
Note that with the advance to the third round the Dilithium submitters have
introduced tweaks to the scheme. The following description is based on the
second-round specification.

Parameters. The Dilithium signature scheme consists of four different pa-
rameter sets called Dilithium1, Dilithium2, Dilithium3, and Dilithium4

of which the latter three target NIST security levels one to three respectively.
We omit Dilithium1 in the following as it falls short of the lowest NIST secu-
rity level.3 Dilithium operates in the polynomial ring Zq[x]/(x

n+1); denoted
by Rq in the following. Across all parameter sets, the modulus is fixed at
q = 223 − 213 + 1 = 8380417 and all polynomials have n = 256 coefficients.

Furthermore, for all parameter sets the bound γ1 is set to (q − 1)/16 =
523776 and γ2 = γ1/2 = 261888. For each parameter set, the remaining
parameters and the resulting public key and signature sizes are given in Ta-
ble 4.1. The parameters consist of the matrix dimension (k, ℓ), the sampling
bounds of the secret η, and the rejection thresholds β and ω. The Dilithium
signature-generation algorithm uses rejection sampling to find a signature
that can be both correctly verified and does not leak information about the
secret key. Due to this iterative nature, the runtime of Dilithium varies sig-
nificantly between multiple signature generations. Note, however, that the
rejection probability does not depend on the secret key, and consequently,

3Dilithium1 has also been eliminated from the third-round submission.
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Algorithm 15 Dilithium key generation

Output: Secret key sk = (ρ,K, tr, s1, s2, t0)
Output: Public key pk = (ρ, t1)

1: ρ← {0,1}256

2: K ← {0,1}256

3: (s1, s2) ← Sℓ
η × S

k
η

4: Â ∈ Rk×ℓ
q ∶= ExpandA(ρ)

5: t ∶= NTT−1(Â ○NTT(s1)) + s2
6: (t1, t0) ∶= Power2Round(t)
7: tr ∈ {0,1}384 ∶= H(ρ∣∣t1)

the variable run-time caused by rejection sampling does not leak any secret
information [LDK+17, Section 3.3].

Notation. We follow the notation of the Dilithium specification [LDK+17]
and denote polynomials by lower-case Latin letters like c, vectors of poly-
nomials by bold lower-case letters like t, and matrices by bold upper case
letters (A). Polynomials, vectors, and matrices that have been transformed
to the NTT domain are identified by their hat, e.g., ĉ, â and Â. The op-
erator ○ describes coefficient-wise multiplication. The operator ∣∣ denotes
concatenation of two inputs that are implicitly converted to a byte-string.
∣∣a∣∣∞ refers to the maximum absolute coefficient of the polynomial a and is
similarly defined for vectors. When sampling a from a certain distribution
S, we write a← S. Sη is the uniform distribution ranging from −η to +η.

Functions. As a building block, Dilithium uses the NTT and NTT−1 func-
tion which are used to implement efficient polynomial multiplication of a, b as
NTT−1(NTT(a) ○NTT(b)). The details of the Dilithium NTT are described
later in this section. In addition, Dilithium uses a collision-resistant hash-
function H with 384-bit output length and a cryptographic hash-function
HB outputting a polynomial that has exactly 60 coefficients set to ±1 while
the remaining 196 coefficients are zero. The hash functions H and HB are
implemented using the extendable-output function (XOF) SHAKE256. Fur-
thermore, the Dilithium specification defines the seed-expansion functions
ExpandA and ExpandMask; the rounding functions Power2Round, HighBits,
and Decompose and the hint functions MakeHint and UseHint. To keep the
algorithm description brief, we omit the details of those functions and refer
the reader to the Dilithium specification.

Scheme Specification. Algorithm 15, Algorithm 16, and Algorithm 17
specify Dilithium key generation, signature generation, and signature verifi-
cation. The descriptions are consistent with the ones from Figure 4 in the
Dilithium specification [LDK+17], but we omit details about rounding that
are not relevant to this work.
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Algorithm 16 Dilithium signature generation

Input: Secret key sk = (ρ,K, tr, s1, s2, t0)
Input: Message M ∈ {0,1}∗

Output: Signature σ = (z,h, c)
1: Â ∈ Rk×ℓ

q ∶= ExpandA(ρ)

2: µ ∈ {0,1}384 ∶= H(tr∣∣M)
3: κ ∶= 0; (z,h) = �
4: ρ′ ∈ {0,1}384 ∶= H(K ∣∣µ)
5: ŝ1 ∶= NTT(s1); ŝ2 ∶= NTT(s2); t̂0 ∶= NTT(t0)
6: while (z,h) = � do
7: y ∈ Sℓ

γ1−1 ∶= ExpandMask(ρ
′, κ)

8: w ∶= NTT−1(Â ○NTT(y))
9: w1 ∶= HighBits(w)

10: c ∶= HB(µ∣∣w1)
11: ĉ ∶= NTT(c)
12: z ∶= y +NTT−1(ĉ ○ ŝ1)
13: (r1, r0) ∶= Decompose(w −NTT−1(ĉ ○ ŝ2))
14: if ∣∣z∣∣∞ ≥ γ1 − β or ∣∣r0∣∣∞ ≥ γ2 − β or r1 ≠w1 then
15: (z,h) = �
16: else
17: h ∶= MakeHint (−NTT−1(ĉ ○ t̂0),w − NTT−1(ĉ ○ ŝ2) + NTT−1(ĉ ○ t̂0))

18: if ∣∣NTT−1(ĉ ○ t̂0)∣∣∞ ≥ γ2 or # 1’s in h > ω then
19: (z,h) = �
20: end if
21: end if
22: κ ∶= κ + 1
23: end while

Number Theoretic Transform. At the core of the Dilithium scheme con-
struction and parameter choices is the NTT which allows efficient polyno-
mial multiplication. Dilithium uses a negacyclic NTT with n = 256 and
q = 8380417, which allows a complete NTT as described in Section 2.2.4. We
implement it using Cooley–Tukey butterflies for NTT and Gentleman–Sande
for NTT−1 as described in Section 2.2.5.

4.1.2 Target Platforms: Cortex-M3 and Cortex-M4

We target the Cortex-M4 and Cortex-M3 platforms previously described in
Section 2.4.1 and Section 2.4.2.
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Algorithm 17 Dilithium verification

Input: Public key pk = (ρ, t1)
Input: Message M ∈ {0,1}∗

Input: Signature σ = (z,h, c)
Output: Valid or Invalid

1: Â ∈ Rk×ℓ
q ∶= ExpandA(ρ)

2: µ ∈ {0,1}384 ∶= H(H(ρ∣∣t1)∣∣M)
3: w′1 ∶= UseHint(h,NTT−1(Â ○NTT(z) −NTT(c) ○NTT(2d ⋅ t1)))
4: if c = HB(µ∣∣w

′
1) and ∣∣z∣∣∞ < γ1 − β and # 1’s in h ≤ ω then

5: return Valid

6: else
7: return Invalid

8: end if

4.2 Improving Cortex-M4 Performance

Our Cortex-M4 implementation is based on the Dilithium implementation
by Ravi, Gupta, Chattopadhyay, and Bhasin [RGCB19], which includes the
NTT and NTT−1 assembly implementation of Güneysu, Krausz, Oder, and
Speith [GKOS18].

In Dilithium, the NTT and NTT−1 are computed iteratively and in-place,
such that no auxiliary vectors are required to store intermediate results. For
computing the NTT, Dilithium uses such an iterative Cooley–Tukey algo-
rithm, which takes its input vector in normal order, and outputs the vec-
tor in bit-reversed order. The NTT−1 is implemented using an iterative
Gentleman–Sande algorithm, which takes its input vector in bit-reversed or-
der and returns a vector in normal order. Note that this has no effect on the
polynomial-multiplication property (using coefficient-wise multiplication), as
described in Section 4.1.

In our implementation, similarly to previous work, we pre-compute and
store the twiddle factors in flash. The twiddle factors are stored in the Mont-
gomery domain (with modulus R = 232), such that after the multiplication
in the FFT butterfly, we can use Montgomery reduction [Mon85] to reduce
the product modulo q.

After each level of the NTT and NTT−1, the polynomial coefficients are
growing in size due to additions and subtractions. Intuitively we would apply
a modular reduction after each addition/subtraction operation. However,
the coefficients in the input polynomial are bounded by 2q (which is only 24
bits) and even if we do not reduce mod q after each level, we will not overflow
the 32-bit registers in which we store the coefficients. Therefore, we reduce
each coefficient mod q only once, at the end of the NTT and NTT−1. This
technique of delaying the reduction is usually referred to as lazy reduction.

When implementing the NTT and NTT−1, we first unroll the outer loop
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Algorithm 18 CT butterfly from [GKOS18]

Input: p0, p1, twiddle

Input: q=8380417, qinv=4236238847

Output: p0, p1

1: umull tmp0, tmp1, p1, twiddle

2: mul pol1, tmp0, qinv

3: umlal tmp0, tmp1, p1, q

4: add p1, p0, q, lsl#1

5: sub p1, p1, tmp1

6: add p0, p0, tmp1

Algorithm 19 Our CT butterfly

Input: p0, p1, twiddle

Input: q=8380417, qinv=4236238847

Output: p0, p1

1: smull tmp0, tmp1, p1, twiddle

2: mul p1, tmp0, qinv

3: smlal tmp0, tmp1, p1, q

4: sub p1, p0, tmp1

5: add p0, p0, tmp1

which iterates over the eight levels of the NTT and NTT−1. Furthermore,
similar to the merging technique in [GOPS13], we can merge two levels of
the NTT and NTT−1 on Cortex-M4 ({0,1}, {2,3}, {4,5} and {6,7}). Merging
k layers here means that instead of loading two coefficients, one loads the
2k coefficients which are used together in k consecutive layers. By doing so
one can eliminate the load and store operations between the layers. Hence,
the number of layers that can be merged is bounded by the available regis-
ters. For our implementation, we achieved the best performance by merging
two layers. As a consequence, the number of store and load instructions is
reduced by a factor of 2.

Lastly, the main difference which distinguishes our implementation from
the one published in [GKOS18] is changing the polynomial coefficients to
signed representation. When unsigned integers are subtracted from each
other, it is possible for the result to wrap around zero (when the result
would be negative).

To prevent this wraparound, the subtractions in the reference implemen-
tation are accompanied by addition of a multiple of q, pushing the results
back into the positive domain. By switching to the signed representation,
the problem of negative wraparounds is fixed, and we do not need this ex-
tra multiple-of-q addition. This allows us to eliminate all these additions
throughout the code.
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Algorithm 20 GS butterfly in [GKOS18]

Input: p0, p1, twiddle

Input: q=8380417, qinv=4236238847

Output: p0, p1

1: add tmp0, p0, q, lsl#8

2: sub tmp0, tmp0, p1

3: add p0, p0, p1

4: umull tmp1, p1, tmp0, twiddle

5: mul tmp0, tmp1, qinv

6: umlal tmp1, p1, tmp0, q

Algorithm 21 Our GS butterfly

Input: p0, p1, twiddle

Input: q=8380417, qinv=4236238847

Output: p0, p1

1: sub tmp0, p0, p1

2: add p0, p0, p1

3: smull tmp1, p1, tmp0, twiddle

4: mul tmp0, tmp1, qinv

5: smlal tmp1, p1, tmp0, q

This is especially relevant for the NTT and NTT−1 implementations be-
cause every butterfly operation has a subtraction. Algorithm 19 shows our
improvements to the CT butterfly in the NTT by [GKOS18] which is shown
in Algorithm 18. For the GS butterflies in the NTT−1, the improvements
are listed in Algorithms 20 and 21.

However, the wraparound-mitigating additions were not only present in
the NTT, but also in the sampling of s1, s2, and y, polynomial subtraction,
and unpacking operations throughout the scheme. By switching to signed
representation, we did not only improve the performance of the NTT, but
also of all the other routines listed above.

Finally, in addition to improving the NTT and NTT−1, we rewrote the
pointwise polynomial multiplication, uniform sampling of polynomials, and
polynomial reduction in assembly as these were the most expensive opera-
tions besides the already optimized NTT, NTT−1, and hashing operations
using Keccak. We omit the details, as they result straightforwardly from the
reference code.
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4.3 Fast Constant-Time NTTs on Cortex-M3

Our constant-time Cortex-M3 implementation of Dilithium is based on the
Cortex-M4 implementation described in the previous section. To keep this
section concise, we only describe the differences here, which are mainly in or-
der to make the implementation constant time. When compiling the existing
implementation [GKOS18] for the Cortex-M3, we identify three functions
that make use of the variable-time instructions umull and umlal: NTT,
NTT−1, and pointwise multiplication (○). These functions are the only
ones that involve the multiplication of the 32-bit coefficients of polynomials.
When any of them operates on secret data, it will leak information through
a timing side-channel.

Previous work by [MGTF19] suggests that the reference implementation
of Dilithium is constant time. This is however untrue for Cortex-M3 because
the compiler is in no way prevented from emitting any of the variable-time
instructions. In their paper, the authors propose a modified Dilithium with a
power-of-two modulus q = 232 to allow for cheaper masking. As a side-effect
of this proposed change, multiplications can be done using mul, mls, and mla

as those implicitly wrap their results modulo 232. In that case, implementing
Dilithium in constant time is more straightforward.

Interestingly, many of the operations within Dilithium do not handle se-
cret data, and, hence, do not need to be constant time. Particularly, all
operations in the signature verification (Algorithm 17) are only operating on
public data and can, therefore, be implemented in variable time. Similarly,
in signature generation (Algorithm 16) NTT(t0) (line 5), NTT(HB(µ,w1))
(line 10), and NTT−1(ĉ ○ t̂0) (line 16 and 17) are not processing secret data
as both t and c are considered public. For the details, we refer to the se-
curity proof in [LDK+17, Section 5]. The remaining calls to NTT, NTT−1,
and ○ do process secret data. Similarly, all operations in the key generation
of Dilithium (Algorithm 15) have secret inputs. In our implementation, we
provide both a constant-time and variable-time (leaktime) implementation
implementations of NTT, NTT−1, and ○. Because the variable-time imple-
mentations are significantly faster, we prefer using them over the constant-
time implementations when we are only dealing with public data.

Note that, in theory, the compiler could introduce umull, umlal, smull,
and smull instructions in other parts of the code as well. Since there is no
easy way to prevent compilers (gcc and clang) from emitting those instruc-
tions, we instead carefully analyze the assembly generated by the compiler to
not contain these instructions in functions that are not safe to leak. We add
the suffix leaktime to the names of variable-time functions only operating
on public data to support this analysis.

The remainder of this section describes the necessary changes to the
Cortex-M4 implementation to ensure it executes in constant time on the
Cortex-M3. We describe the details from the bottom up, i.e., we start with
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the multiplication of coefficients, continue with the changes to the implemen-
tations of the Cooley–Tukey, and Gentleman–Sande butterfly operations,
and finally describe the changes to the NTT, NTT−1, and the rest of the
scheme.

4.3.1 smull and smlal

As Dilithium uses a 23-bit modulus q, its polynomials are commonly rep-
resented as vectors of 32-bit values. Consequently, multiplying coefficients
requires multiplication of 32-bit values producing a 64-bit product. Usually,
Montgomery multiplication is used, so that the result is promptly reduced
back to 32-bits. In our Cortex-M4 implementation, the Montgomery multi-
plication is computed using smull and smlal, which—as already discussed—
execute in variable-time on the Cortex-M3. In case the inputs are secret, we
cannot use those instructions.

In general, there are two approaches to address this issue: either re-
implement smull and smlal using available constant-time instructions (mul,
mla, add) or using a different representation of polynomials that does not
require to multiply 32-bit coefficients. We experimented with the latter ap-
proach by using multiple smaller 16-bit polynomial multiplications to con-
struct a larger 23-bit polynomial multiplication. The idea is to perform
polynomial multiplications in Rq by first splitting up the polynomial into
multiple polynomials in Zqi[x]/(x

n + 1), performing the polynomial multi-
plication in these smaller rings, and then reconstructing the result in Rq

using the explicit Chinese remainder theorem [BS07]. A similar approach
is used in the AVX2 implementation of NTRU Prime [BCLv17]. For the

result to be correct, it needs to hold that 2n ⋅ ⌊q/2⌋
2
< ∏ qi. For example,

one could use the NTT-friendly primes {7681,10753,11777,12289}. How-
ever, this approach turned out to be slower than re-implementing the smull
and smlal instructions using mul instructions, and hence we did not use it
in our implementation. Nonetheless, we present results for 16-bit NTTs on
the Cortex-M3 for the primes 3329 and 12289 which are used in the NIST
key-encapsulation candidates Kyber [ABD+17] and NewHope [AAB+17] re-
spectively. We report the results for the full schemes in Section 4.6.

To re-implement smull and smlal, we use the schoolbook approach, i.e.,
we represent the 32-bit inputs in radix 216 and compute the product as
sums of 32-bit products. Let a = 216a1 + a0 and b = 216b1 + b0, with 0 ≤
a0, b0 < 2

16 and −215 ≤ a1, b1 < 2
15, then the product ab = 232a1b1+2

16(a0b1+
a1b0)+a0b0, with −2

31 ≤ aibj < 2
31. Accordingly, our constant-time assembly

implementations for smull and smlal are illustrated in Algorithm 22 and
Algorithm 23. We denote them by SBSMULL and SBSMLAL in the following.
The four 16-bit halves of the two multiplicands are passed in the registers
a0, a1, b0, and b1; the 64-bit output is placed in c0 (lower half) and c1 (upper
half). For SBSMLAL, c0 and c1 initially contain the value to be added to the
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Algorithm 22 Schoolbook smull (SBSMULL)

Input: a = a0 + 2
16a1, b = b0 + 2

16b1
Output: c = ab = c0 + 2

32c1

1: mul c0, a0, b0

2: mul c1, a1, b1

3: mul tmp, a1, b0

4: mla tmp, a0, b1, tmp

5: adds c0, c0, tmp, lsl #16

6: adc c1, c1, tmp, asr #16

Algorithm 23 Schoolbook smlal (SBSMLAL)

Input: a = a0 + 2
16a1, b = b0 + 2

16b1, c = c0 + 2
16c1

Output: c = c + ab = c0 + 2
32c1

1: mul tmp, a0, b0

2: adds c0, c0, tmp

3: mul tmp, a1, b1

4: adc c1, c1, tmp

5: mul tmp, a1, b0

6: mla tmp, a0, b1, tmp

7: adds c0, c0, tmp, lsl #16

8: adc c1, c1, tmp, asr #16

product. On the Cortex-M3, additions and multiplications use one cycle,
while mla uses two cycles. As such, the SBSMULL macro takes seven cycles
to execute, while SBSMLAL takes 9 cycles.
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Algorithm 24 Constant-time Cooley–Tukey butterfly on the M3

Input: p0 (32-bit signed), p1 = p1l + 216p1h (p1l unsigned, p1h signed)
Input: twiddle = tl + 216th (tl unsigned, th signed)
Input: q = 8380417 = ql + 216qh, qinv = 4236238847

Output: p0, p1 (32-bit signed)
1: SBSMULL tmpl, tmph, p1l, p1h, tl, th

2: mul p1h, tmpl, qinv

3: ubfx p1l, p1h, #0, #16

4: asr p1h, p1h, #16

5: SBSMLAL tmpl, tmph, p1l, p1h, ql, qh ▷ (tmpl,tmph) += (p1l,p1h)⋅ q
6: sub p1, p0, tmph

7: add p0, p0, tmph

It is important to note that SBSMULL (SBSMLAL) is not semantically equiv-
alent to smull (smlal). In case the accumulation (a0b1 + a1b0) in line 7 of
Algorithm 22 or line 11 of Algorithm 23 overflows, the carry bit is lost and
the result will not be correct. Hence, our schoolbook multiplication does not
support the full 32-bit range of the inputs. In general, we have to consider
two cases:

1. One of the factors (say b) is small, e.g., a twiddle factor (< q) or the
constant q. In that case, b1 is at most ⌊ q

216
⌋ = 127. In the worst-case,

both b0 and a0 are equal to 216 − 1. Consequently, for the addition

(a0b1 + a1b0) not to overflow, a1 can be at most ⌊ 2
31−1−127⋅(216−1)

216−1 ⌋ =

32641.

2. Both multiplicands can be equally large. This occurs, for example, in
the pointwise polynomial multiplication. In that case, both a0b1 and

a1b0 need to be less or equal to ⌊ 2
31−1
2
⌋ = 230 − 1 and hence, a1, b1 ≤

⌊ 2
30−1
216−1 ⌋ = 2

14.

Case 1 applies in the NTT and NTT−1. In the NTT, the coefficient values
never exceed 10q, which is sufficiently small for the multiplication to remain
safe. Similarly, in the NTT−1 coefficients never exceed 128q < 32641 ⋅ 216.

Case 2 applies in the pointwise polynomial multiplication. In that case,
the input coefficients are bounded by 10q which is comfortably below 230.

4.3.2 Cooley–Tukey and Gentleman–Sande Butterflies

Using constant-time SBSMULL and SBSMLAL subroutines, we can construct
the butterfly operations needed to implement the NTT and NTT−1. Algo-
rithm 24 depicts the modified Cooley–Tukey butterfly operation based on
Algorithm 19. To be able to use SBSMULL, p1 and the twiddle factor need to
be loaded in half-words, while p0 can be loaded as a 32-bit word. For the
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Algorithm 25 Constant-time Gentleman–Sande butterfly on the M3

Input: p0, p1 (32-bit signed), twiddle = tl+216th (tl unsigned, th signed)
Input: q = 8380417 = ql + 216qh, qinv = 4236238847

Output: p0, p1 (32-bit signed)
1: sub tmp, p0, p1

2: add p0, p0, p1

3: ubfx tmpl, tmp, #0, #16

4: asr tmph, tmp, #16

5: SBSMULL tmp, p1, tmpl, tmph, tl, th ▷ (tmp, p1) = (tmpl,tmph)⋅twiddle
6: mul tmph, tmp, qinv

7: ubfx tmpl, tmph, #0, #16

8: asr tmph, tmph, #16

9: SBSMLAL tmp, p1, tmpl, tmph, ql, qh ▷ (tmp, p1) += (tmpl,tmph)⋅q

multiplication by q, we require to have the lower and the upper half-word of
q separately. Additionally, we need to split up the 32-bit result of the multi-
plication by −q−1 into half-words (lines 7 and 8). In total, the Cooley–Tukey
butterfly operation requires 21 cycles on the Cortex-M3, while Algorithm 19
only needs five cycles on the Cortex-M4.

Similarly, Algorithm 25 depicts our constant-time assembly implemen-
tation of the Gentleman–Sande butterfly. As the addition and subtraction
happen before the multiplication by the twiddle factor, both p0 and p1 are
loaded as full 32-bit words, while the twiddle factor is again split into two
half words. After the subtraction in line 2, we split up the result before
we pass it into SBSMULL. To perform the Montgomery reduction, we again
need the split up the result of the multiplication by −q−1 into halves, before
multiplying it by q using SBSMLAL. Each Gentleman–Sande butterfly opera-
tion requires 23 cycles on the Cortex-M3 which compares to five cycles for
Algorithm 21 on the Cortex-M4.

4.3.3 NTT, NTT−1, and ○
Using the Cooley–Tukey butterfly from the previous section, we implement
the NTT. Similar to in the Cortex-M4 implementation, we pre-compute all
the twiddle factors and place them into flash. As our Cooley–Tukey butterfly
requires the second coefficient and the twiddle factor in halves, we load those
using ldrh (for the unsigned lower half-word) and ldrsh (for the upper
signed half-word). This, however, significantly increases register pressure
and hinders the common optimization technique of merging multiple levels
of butterfly operations with the purpose of saving store and load instructions.
Therefore, we can not use that optimization and need to perform one layer at
a time. This also leads to a slightly different ordering of the twiddle factors
in memory. The results of the butterfly are returned as a 32-bit value and
can, hence, be stored back using str.
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For the NTT−1, we proceed analogously. However, the inputs to the
butterfly have to be loaded in full words using ldr. At the end of the
NTT−1, each coefficient of the polynomial is multiplied with the constant
n−1 followed by a Montgomery reduction. We integrate this step into the
last level of the NTT−1 in order to minimize load and store operations.
Furthermore, we observe that n−1 in Montgomery domain is 41 978 and,
hence, less than 16-bits. Therefore, we do not need a full SBSMULL, but can
use a simpler multiplication routine that multiplies a 32-bit word by the 16-
bit constant which requires two multiplication instructions and, hence, two
cycles less.

Besides the NTT and NTT−1 we identify one other place where our com-
piler is introducing smull and smlal instruction: The pointwise multiplica-
tion ○. If either of the multiplicands is secret, the pointwise multiplication
must not use the variable time instructions. We guarantee that by rewriting
the pointwise multiplication in assembly and making use of the Montgomery
multiplication using SBSMULL and SBSMLAL like in our Butterfly operation in
Algorithm 24 and Algorithm 25. In case both inputs are considered public,
we simply use the pointwise multiplication which was presented in Section 4.2
section.

4.4 Time-Memory Trade-Offs

Depending on the programmer’s requirements, there are multiple ways in
which we can implement Dilithium signing, each with its own tradeoffs.

For microcontroller implementations of Dilithium the main challenge is
that computing A is expensive since it involves many calls to SHAKE256

which is relatively slow in software. Also, A is used multiple times during
the signing procedure. Consequently, we either have to store the complete
matrix A in RAM or flash or incur the cost of having to recompute it during
each loop iteration.

In order to explore this time-memory tradeoff, we implement the signing
operation using three different strategies. In the first strategy, we refuse to
recompute A during the signing operation and instead store it in flash. The
second strategy describes the more traditional implementation of Dilithium,
expandingA once during each signing operation before entering the rejection
sampling loop. The third case describes the situation wherein we are highly
constrained in flash and SRAM size but have ample run-time budget. In
this strategy, we save the amount of memory needed by computing both A
and y on the fly.

Although the algorithm’s intermediate values can be stored anywhere in
the RAM (i.e. in SRAM/CCM for the STM32F407 and SRAM1/SRAM2 for
the ATSAM3X8E), we see no real benefit in doing that. Therefore, to keep
it simple, we will store the variables on the stack.
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4.4.1 Strategy 1: A in Flash

In Dilithium signing, the valuesA, ŝ1, ŝ2, and t̂0 depend only on the Dilithium
key pair. Therefore, instead of computing these values during the signing,
we can compute these values as part of the key generation. We assume that
the platform has some kind of non-volatile storage that is large enough (and
secure enough4) to store these extra values. Then, during the signature
generation algorithm, instead of passing in sk (as described in line 1 of
Algorithm 16), we pass a larger struct that also contains the pre-computed
values. These pre-computed values (A, ŝ1, ŝ2 and t̂0) add up to k ⋅ l + 2k + l
polynomials that have to be stored extra. In the case of Dilithium3, this
amounts to 34 KiB of extra flash space as each Dilithium polynomial requires
1 KiB when stored uncompressed.

Because these four values are now stored separately, we do not have to
compute (and store) them anymore during the signature generation. Thus,
this strategy will save a considerable amount of SRAM, in exchange for
(relatively cheap) flash space. Furthermore, in the absence of hardware-
accelerated SHAKE256, generating A is a relatively expensive step in the
signature-generation process. Having A stored in flash will speed up the
overall performance of generating signatures. Hence, we think that this
strategy will be the most favored to be deployed in a real-world small-devices
environment.

4.4.2 Strategy 2: A in SRAM

When there is enough SRAM available on the device, we opt for the tra-
ditional implementation of the signature generation algorithm. That is, we
follow the specification closely, and implement signature generation following
the general structure of Algorithm 16. Apart from some space for storing
intermediate values, we will need to allocate

• 4k polynomial slots for storing t̂0, ŝ2, w, w1;

• (k + 3)l polynomial slots for storing A, ŝ1, y and ŷ; and

• 1 polynomial slot for storing ĉ.

This adds up to a pretty high lower bound of k ⋅l+4k+3l+1 KiB of necessary
stack space, e.g., 53 KiB for Dilithium3.

4.4.3 Strategy 3: Streaming A and y

For the last strategy, we considered the situation, wherein we optimize stack
usage without using extra long-term storage for pre-computed values. In the

4A, and t̂0 need to be integrity-protected; ŝ1, and ŝ2 need to remain secret and
integrity-protected.
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signing implementation, we optimize exclusively for stack usage. We only
intend to find the lower bound of the needed stack space.

In contrast to the other strategies, we do not store any complete copies of
A and y. Instead, we regenerate every element of A and y on the fly when
we compute elements of w (in line 8 of Algorithm 16). Because we do not
retain y after this step, we regenerate it again in line 12 of Algorithm 16).
Relative to strategy 2, this saves us k ⋅ l polynomials of space for A, and
another l polynomials for y.

When we look further into stack-optimizing the signing algorithm, we
find that the main bottleneck in terms of stack usage is the overlapping
lifetimes of w and ĉ. In lines 13 and 17 of Algorithm 16, the values r1, r0
and h all depend on both w and ĉ. However, in line 11 we also need the
complete value of w1 (and thus w) to compute ĉ. Therefore, we conclude
that we either have to store w and ĉ both at the same time; or we have to
recompute every element of w on the fly when we are computing r1 and r0
in line 13, and when we are constructing the hint h in line 17.

In order to recompute elements of w, we would have to do the matrix
multiplication NTT−1(Â ○ NTT(y)) all over again, including the complete
regenerating of A and y. The performance cost of this optimization would
be at least a factor 2, so we chose to not do this. Instead, we accept that w
and ĉ both need to be stored at the same time.

4.4.4 Splitting Signature Generation in an Offline and
Online Phase

To speed up the Dilithium signing process even more, one can choose to split
the signature generation into an offline and online phase, where the offline
phase can already be performed before the message to be signed is known.
The general idea of using an offline/online phase was introduced in 1989 by
Even, Goldreich, and Micali [EGM90], and was first proposed for usage in
lattice-based signature schemes in [AYS15]. It has also been used last year
by Ravi, Gupta, Chattopadhyay, and Bhasin in [RGCB19, Section 4.1.2] to
optimize the online latency of Dilithium signing.

However, for Dilithium, this optimization comes with a significant cost.
In their paper, Ravi, Gupta, Chattopadhyay, and Bhasin describe that an
additional 260 KiB of space5 is needed to store the pre-computed values for
Dilithium3, such that there is a 95% probability that at least one of the y
values results in a good signature. For our main target (the ATSAM3X8E),
that would mean that more than half its flash space would already be lost
to storing these pre-computed values. We think that, in the general case,
the improved signature-generation latency does not justify this kind of loss
in available flash space.

5See [RGCB19, Table 6]. Compute 300 − 34 = 266 KB ≈̂ 260 KiB.
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4.5 Results

This section presents the performance results for our Dilithium implemen-
tations. First, we present new speed records for the Dilithium NTT on the
Cortex-M4 and the first results for the Dilithium, Kyber, and NewHope NTT
in Section 4.5.1. We then present results for the full Dilithium scheme on the
Cortex-M4 (Section 4.5.2) and on the Cortex-M3 (Section 4.5.3). Finally,
we profile our implementations on the Cortex-M4 in Section 4.5.5.

Cortex-M4 setup. We benchmark all our Cortex-M4 implementations on
an STM32F407 discovery board, which features the STM32F407VG micro-
controller. It was clocked at 24 MHz to eliminate flash wait states when
fetching instructions or data from flash. For benchmarking the algorithm
latency we used the SysTick counter. Our build and benchmarking setup
are based on pqm4 [KPR+] and benchmarking our code within pqm4 gives
the same performance results. Our code has been merged into pqm4.6

Cortex-M3 setup. The Cortex-M3 measurements were done on an Ar-
duino Due board that uses the ATSAM3X8E microcontroller. The ATSAM
chip was clocked at 16 MHz, which results in a flash access time with zero
wait-states. The algorithm latencies were measured using the internal cycle
counter (CYCCNT).

Compiler, random numbers, stack measurements, and Keccak. On
both platforms, we used the GCC compiler, version 10.2.0. For obtaining
random numbers (e.g., ρ and K), we use the hardware random number gen-
erators which are available on both cores. The stack usage was measured by
filling the memory with sentinel values, executing the algorithm, and mea-
suring the amount of sentinel-value bytes that were overwritten during the
execution. In the stack measurements, space reserved for input and output
values is not counted. For SHA3 and SHAKE, we use the assembly optimized
implementation of the Keccak permutation from the eXtended Keccak Code
Package (XKCP) [DHP+]. As it only uses Armv7-M instructions, we use the
same implementation on both platforms.

Side-channel Protection. In our implementations we are only considering
timing side-channels, i.e., we provide constant-time code that avoids leaking
secret data through variable time instructions, secret-dependent branching,
and secret-dependent memory addresses. For certain use-cases one may want
to consider also protecting against more powerful attacks like power analysis
attacks, e.g., using masking. There exists work in the literature for mask-
ing Dilithium by Migliore, Gérard, Tibouchi, and Fouque [MGTF19] which
presents a protected implementation modified Dilithium. There is more work
required for implementing a fully masked Dilithium that is adhering to the

6https://github.com/mupq/pqm4/pull/163
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Table 4.2: Performance results for NTT, NTT−1, and ○ of Dilithium, Kyber,
and NewHope for the Cortex-M3 and the Cortex-M4 reported in clock cy-
cles. The Cortex-M3 (SAM3X8E) is running at 16MHz, and the Cortex-M4
(STM32F407) is running at 24 MHz. For the Cortex-M3, we report cycles
for constant-time (CT) code and variable-time code.

CT NTT NTT−1 ○

Dilithium a

[GKOS18] ✓ M4 10 701 11 662 −
This work ✓ M4 8 540 8 923 1 955
This work – M3 19 347 21 006 4 899
This work ✓ M3 33 025 36 609 8 479

Kyber b [ABCG20] ✓ M4 6 855 6 983 2 325
This work ✓ M3 10 819 12 994 4 773

NewHopeCCA1024 c [ABCG20] ✓ M4 68 131 51 231 6 229
This work ✓ M3 77 001 93 128 18 722

a n = 256, q = 8380417 (23 bits), 8 layer NTT/NTT−1
b n = 256, q = 3329 (12 bits), 7 layer NTT/NTT−1
c n = 1024, q = 12289 (14 bits), 10 layer NTT/NTT−1

specification submitted to NIST. However, this work is outside of the scope
of this chapter and we leave it for future work.

4.5.1 NTT Performance

In Table 4.2, we list the benchmarking results on the Cortex-M4 and Cortex-
M3 for the optimized NTT, NTT−1, and pointwise multiplication (○) of
Dilithium, Kyber, and NewHopeCCA1024. For the Cortex-M4, we obtain a
speedup of 23% for the NTT and NTT−1 compared to [GKOS18, RGCB19].
This speedup is mainly due to the switch to a signed representation of poly-
nomials. We use this representation throughout our new Dilithium imple-
mentations, which saves several additions of multiples of q. Additionally,
we optimize the pointwise multiplication (○) which was not optimized in
previous implementations.

In the Cortex-M3 results, we first benchmark the implementation also
used on the Cortex-M4 which uses smull and smlal. As smull and smlal,
but also mla, need significantly more cycles on the Cortex-M4 (respectively
3 – 5, 4 – 7, and two on the M3 vs. one on the Cortex-M4), the cycle counts
for NTT, NTT−1, and ○ increase between 2.3× and 2.5×. Making that con-
stant time on the Cortex-M3 using SBSMULL and SBSMLAL from Section 4.3.1
increases the number of cycles by a factor of 1.7×.
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Table 4.3: Performance results on the Cortex-M4 (STM32F407 at 24 MHz).
Averaged over 10 000 executions.

Algorithm/
strategy Param Work Speed [kcc] Stack [B]

KeyGen (1)
2 This work 2 267 7 916c

3 This work 3 545 8 940d

4 This work 5 086 9 964e

KeyGen (2 & 3)

2 This work 1 315 7 916
3 [GKOS18] 2 320 50 488
3 This work 2 013 8 940
4 This work 2 837 9 964

Sign (1)

2 [RGCB19, scen. 2]a 3 640 –
2 This work 3 097 14 428c

3 [RGCB19, scen. 2]a 5 495 –
3 This work 4 578 17 628d

4 [RGCB19, scen. 2]a 4 733 –
4 This work 3 768 20 828e

Sign (2)

2 [RGCB19, scen. 1]b 4 632 –
2 This work 3 987 38 300
3 [GKOS18] 8 348 86 568
3 [RGCB19, scen. 1]b 7 085 –
3 This work 6 053 52 756
4 [RGCB19, scen. 1]b 7 061 –
4 This work 6 001 69 276

Sign (3)
2 This work 13 332 8 924
3 This work 23 550 9 948
4 This work 22 658 10 972

Verify

2 This work 1 259 9 004
3 [GKOS18] 2 342 54 800
3 This work 1 917 10 028
4 This work 2 720 11 052

a “Strategy 1” from Section 4.4.1 corresponds to “Scenario 2” in
[RGCB19].

b “Strategy 2” from Section 4.4.2 corresponds to “Scenario 1” in
[RGCB19].

c For Dilithium2 using stack strategy 1, additional 23 632 bytes of flash
space are used for storing the pre-computed values.

d For Dilithium3 using stack strategy 1, additional 34 896 bytes of flash
space are used for storing the pre-computed values.

e For Dilithium4 using stack strategy 1, additional 48 208 bytes of flash
space are used for storing the pre-computed values.
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4.5.2 Cortex-M4 Performance

Table 4.3 lists the benchmarking results of our Dilithium implementation, to-
gether with the cycle counts from the relevant related work. As the signing
time varies considerably depending on the number of rejections, we per-
formed 10 000 executions and took the average of the resulting cycle counts.

For our signing strategy 1, we need to pre-compute A, ŝ1, ŝ2, and t̂0
We include this pre-computation in the key generation. Compared to the
[GKOS18] implementation, which is comparable to our signing strategy 1,
we obtain speedups of 13%, 27%, and 18% for key generation, signing, and
verification respectively. We also drastically decrease the stack consumption.

When comparing to the [RGCB19] implementation, our strategy 1 is
similar to their scenario 2, while our strategy 2 corresponds to their scenario
1. For both scenarios, we achieve substantial speedups for all parameter sets
ranging from 14% to 20%.

Our strategy 3 implementation which is solely optimized for memory
footprint, achieves by far the worst performance in terms of speed.

4.5.3 Cortex-M3 Performance

Table 4.4 presents our results for the Cortex-M3. The only other work
implementing (a modified version of) Dilithium on the Cortex-M3 is from
Migliore, Gérard, Tibouchi, and Fouque [MGTF19]. However, they do not
report cycle counts on the Cortex-M3, and we were not able to find their
source code online. Therefore, we can unfortunately not compare our results
to theirs.

4.5.4 Stack Usage

Up to this point, we have mainly discussed the improvements in Dilithium’s
speed. However, as already mentioned, it is also important to be economic
in the usage of stack space.

In Tables 4.3 and 4.4, we show the considerable improvement in stack-
space usage over the previous works. We see that signature verification needs
only around 10 KiB of storage space (depending on the Dilithium parame-
ters), without incurring a performance hit. Furthermore, when Dilithium is
deployed on a device that has enough space to store A—either in SRAM or
in flash—we get a reasonable signature-generation latency.

However, in the same tables, we see the cost of aggressively optimizing for
stack space. On both platforms, we see really disproportionate cycle counts
for signature generation, for example with Dilithium3 signature generation
takes about 33 million cycles on the Cortex-M3. On slow devices (like our
16 MHz Arduino Due), this latency grows into the order of seconds.
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4.5.5 Profiling

To identify how much is still left to optimize in our implementations, we
profiled the implementations on the Cortex-M4. Table 4.5 contains the pro-
file for all our Dilithium implementations. We see that the run-time of the
scheme is mostly dominated by Keccak. The proportion of cycles spent in
hashing is up to 85% for key generation, 77% for signing, and 81% for ver-
ification, which greatly limits the speedup achievable by further optimizing
the arithmetic of the scheme.

Only about 3.4% to 24.5% of cycles are spent in the NTT and NTT−1.
Another 3.9% to 13.2% of cycles are spent in the other assembly optimized
functions which are pointwise multiplication, uniform sampling, and modular
reduction. The time spent in non-optimized C code is consistently relatively
small. Hence, optimizing the remaining code is not going to provide a large
speedup. When looking at individual functions of the non-optimized code,
no function takes more than 3% of the total run-time.

4.6 Kyber and NewHope on Cortex-M3

As a side-product of Section 4.3, we present implementations for the NTT
and NTT−1 operations for the primes 3329 and 12289. While those did
not allow us to speed up our Dilithium implementation further, they can be
used to implement the key-encapsulation mechanisms Kyber and NewHope
on the Cortex-M3 in constant time. We report the results for these schemes
here. Our implementations of both Kyber and NewHope are based on the
implementations by Alkim, Bilgin, Cenk, and Gérard [ABCG20]. As those
implementations make heavy use of instructions not available on the Cortex-
M3 (e.g., SIMD instructions like uadd16, or multiplication instructions like
smlabb), these are not directly functional on the Cortex-M3.

In addition to the NTT and NTT−1 implementations, we further port the
other assembly routines to Cortex-M3. For Kyber this includes polynomial
addition, polynomial subtraction, Barrett reduction, and base multiplica-
tion. For NewHope, we use the same approach as [ABCG20], and use the
Cooley–Tukey algorithm [CT65] for NTT and the Gentleman–Sande algo-
rithm [GS66] for NTT−1. Besides that, we port the code for polynomial ad-
dition, pointwise multiplication, and bit-reversal to Cortex-M3. We present
the results for both NewHope and Kyber in Table 4.6. The slow-down com-
pared to the Cortex-M4 implementation is between 7% and 20% and as such,
it is not as significant as for the Dilithium implementations. However, it does
demonstrate the limitations of the Cortex-M3.
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Table 4.4: Performance results on the Cortex-M3 (SAM3X8E at 16 MHz).
Averaged over 10000 executions.

Algorithm/
strategy Params Speed [kcc] Stack [B]

KeyGen (1)
Dilithium2 2 945 12 631a

Dilithium3 4 503 15 703b

Dilithium4 6 380 18 783c

KeyGen (2 & 3)
Dilithium2 1 699 7 983
Dilithium3 2 562 9 007
Dilithium4 3 587 10 031

Sign (1)
Dilithium2 5 822 14 869a

Dilithium3 8 730 18 083b

Dilithium4 7 398 21 273c

Sign (2)
Dilithium2 7 115 39 503
Dilithium3 10 667 53 959
Dilithium4 10 031 70 463

Sign (3)
Dilithium2 18 932 9 463
Dilithium3 33 229 10 495
Dilithium4 31 180 11 511

Verify
Dilithium2 1 541 8 944
Dilithium3 2 321 9 967
Dilithium4 3 260 10 999

a For Dilithium2 using stack strategy 1, an additional
23 632 bytes of flash space are used for storing the pre-
computed values.

b For Dilithium3 using stack strategy 1, an additional
34 896 bytes of flash space are used for storing the pre-
computed values.

c For Dilithium4 using stack strategy 1, an additional
48 208 bytes of flash space are used for storing the pre-
computed values.
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Table 4.5: Dilithium profiling results on the Cortex-M4

Param Operation KeyGen Sign Verify
(1) (2 & 3) (1) (2) (3)

2

Keccak 81% 81% 41% 55% 75% 77%
NTT 5% 2% 5% 7% 7% 5%
NTT−1 2% 3% 20% 12% 4% 3%
other asm 5% 6% 10% 9% 4% 7%
not opt. 7% 8% 24% 16% 10% 8%

3

Keccak 83% 83% 50% 64% 77% 79%
NTT 4% 2% 6% 7% 7% 4%
NTT−1 1% 2% 14% 9% 3% 2%
other asm 5% 6% 12% 8% 4% 7%
not opt. 6% 7% 18% 12% 9% 7%

4

Keccak 85% 84% 51% 62% 76% 81%
NTT 4% 2% 6% 6% 7% 4%
NTT−1 1% 2% 13% 9% 4% 2%
other asm 5% 7% 13% 10% 4% 7%
not opt. 5% 6% 17% 13% 10% 6%

Table 4.6: Kyber and NewHope results on the Cortex-M3 (SAM3X8E at 16
MHz) compared to the fastest Cortex-M4 implementation. Average of 100
executions.

KeyGen Encaps Decaps
[kcc] [kcc] [kcc]

Kyber512
[ABCG20] M4 455 586 544
This work M3 539 682 652

Kyber768
[ABCG20] M4 864 1 033 970
This work M3 1 012 1 194 1 145

Kyber1024
[ABCG20] M4 1 405 1 606 1 526
This work M3 1 636 1 853 1 793

NewHopeCCA1024
[ABCG20] M4 1 157 1 675 1 587
This work M3 1 239 1 921 1 888
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Part II

Multiplication for
NTT-unfriendly Rings
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Chapter 5

Toom–Cook and
Karatsuba Multiplication
for Z2m[x]
This chapter is based on work published in

Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe.
Faster multiplication in Z2m[x] on Cortex-M4 to speed up NIST
PQC candidates. In Applied Cryptography and Network Security
– ACNS 2019, LNCS, pages 281–301. Springer, 2019. https:

//eprint.iacr.org/2018/1018

This work first appeared online during the first round of the NISTPQC
competition. In this chapter, we look at KEMs based on structured lat-
tices that were not designed for using NTT-based polynomial multiplication,
i.e., use polynomial rings Rq that are not immediately suitable for benefit-
ing from the NTT. In particular, we look at schemes using a power-of-two
modulus q = 2m which includes six of the 22 lattice-based first-round NIST-
PQC KEM candidates. Specifically, these schemes are Round2 [GMZB+17],
Saber [DKRV17], NTRU-HRSS [HRSS17b], NTRUEncrypt [ZCHW17],
Kindi [Ban17], and RLizard [CPL+17]. After the first round, Round2 merged
with Hila5 [Saa17] into Round5 [BBF+19] and the Round5 team presented op-
timized software for the Arm Cortex-M4 processor in [SBGM+18]; the multi-
plication in Round5 has more structure, allowing for a specialized high-speed
routine.

We optimize the other five schemes relying on arithmetic in Rq with
a power-of-two q on the same platform. Note that Saber has previously
been optimized on the Arm Cortex-M4 [KBMSRV18] as well; our polyno-
mial multiplication implementation outperforms their results by 42% which
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improves the overall performance of key generation by 22%, encapsulation
by 20%, and decapsulation by 22%. For the other four schemes, the only
software that was readily available for the Cortex-M4 was the reference im-
plementation and, unsurprisingly, our carefully optimized code significantly
outperforms these implementations. For example, our optimized implemen-
tations of RLizard-1024 and Kindi-256-3-4-2 encapsulation and decapsulation
are more than a factor of 20 faster. Our implementation of NTRU-HRSS
encapsulation and decapsulation solidly outperforms the optimized Round5
software presented in [SBGM+18].

We achieve our results by systematically exploring different combinations
of Toom-3, Toom-4, and Karatsuba decomposition [Too63, Coo66, KO63]
of multiplication in Rq, and by carefully hand-optimizing multiplication of
low-degree polynomial multiplication at the bottom of the Toom/Karatsuba
decomposition. The exploration of the different approaches is automated
through a set of Python scripts that generate optimized assembly given the
parameters q = 2k for k ≤ 16 and n ≤ 1024. These Python scripts may be
of independent interest for a similar design-space exploration on different
architectures.

Organization of this chapter. In Section 5.1 we briefly recall the five
NIST candidates that we optimize in this chapter. In Section 5.2 we first
detail our approach to explore different Toom and Karatsuba decomposition
strategies for multiplication in Rq and then explain how we hand-optimized
schoolbook multiplications of low-degree polynomials. Finally, Section 5.3
presents performance results for stand-alone multiplication in Rq for the
different parameter sets, and for the five NIST candidates.

Availability of the software. We have released all software presented in
this chapter, including the Python scripts used for design-space exploration,
into the public domain. The software is available at https://github.com/
mupq/polymul-z2mx-m4 and the implementations have been integrated into
the pqm4 framework [KPR+]. All source code related to this thesis is also
available in a single archive. See Appendix A.

Second and third round of NISTPQC. Since this work first appeared
online, NIST announced the second-round candidates of the post-quantum
competition. While Kindi and RLizard are no longer under consideration by
NIST, Saber, NTRU-HRSS, and NTRUEncrypt made it to the second round.
NTRU-HRSS and NTRUEncrypt were merged into the new scheme NTRU.
The optimizations presented in this chapter carry over directly to the second-
round schemes. In 2020, NTRU and Saber moved to the third round.
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5.1 Preliminaries

In this section, we briefly review the five NIST candidates that we optimize
in this chapter. Readers interested in the multiplication routine outside the
context of NIST submissions are encouraged to skip ahead.

5.1.1 Cryptosystems Optimized in this Chapter

Notation. The full specification of each of the five CCA-secure KEMs would
take several pages, so for the sake of brevity, we leave out various details. In
this section, we highlight the relevant aspects.

In particular, all five schemes build a CCA-secure KEM from an encryp-
tion scheme; for all but NTRUEncrypt, this encryption scheme is only pas-
sively secure. In our descriptions, we focus only on the encryption schemes
underlying the KEM and highlight the multiplications in Rq—the main tar-
get of our optimization effort—by denoting those multiplications with ⍟. In
general, we denote scalar multiplications with ⋅ and polynomial multiplica-
tions with ∗.

Similarly, we do not go into any detail with respect to the sampling
of random bit strings, polynomials, or matrices, and simply denote all of
these functions as SampleR, where R is the set from which the elements
are drawn. While we specify a set to which the sampled elements belong,
we leave the distribution according to which they are sampled unspecified.
Where deterministic sampling from a specific seed is relevant, SampleR is
parameterized with this seed.

Finally, many schemes make use of rounding coefficients of polynomials.
We denote any such rounding operation by ⌊. . . ⌉, specify the domain in which
the result lives, but again omit the details of how the rounding operation is
defined.

RLizard. RLizard is part of the Lizard submission to NIST [CPL+17]. It is
a cryptosystem based on the Ring-Learning-with-Errors (Ring-LWE) and
Ring-Learning-with-Rounding (Ring-LWR) problems. These problems are
closely related, and efficient reductions exist [BPR12, BGM+16]. The sub-
mission motivates the choice for the Learning-with-Rounding problem by
stressing its deterministic encryption routine and reduced ciphertext size
compared to Learning-with-Errors. RLizard.KEM is a CCA-secure KEM that
is constructed by applying Dent’s variant of the FO transform [FO99, Den03]
to the RLizard CPA-secure PKE scheme, which is summarized in Algo-
rithms 26, 27, and 28.

The main structure underlying RLizard is the ring Rq = Zq[x]/(x
n + 1),

but coefficients of the ciphertext are ultimately reduced to Rp, where p < q.
We consider the parameter set where n = 1024, q = 2048 and p = 512. In
the submission the derived KEM is referred to as RING CATEGORY3 N1024
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Algorithm 26 RLizard.KeyGen ()

1: a, s, e← SampleRq

2: b← −a⍟ s + e ∈ Rq

3: return (pk = (a, b), sk = s)

Algorithm 27 RLizard.Enc (m, (a, b))

1: r ← SampleRq

2: c′1 ← a⍟ r ∈ Rq

3: c′2 ← b⍟ r ∈ Rq

4: c1 ← ⌊(p/q) ⋅ c
′
1⌉ ∈ Rp

5: c2 ← ⌊(p/q) ⋅ ((q/2) ⋅m + c
′
2)⌉ ∈ Rp

6: return (c1, c2)

Algorithm 28 RLizard.Dec ((c1, c2), s)

1: m′ ← ⌊(2/p) ⋅ (c2 + c1 ⍟ s)⌉ ∈ R2

2: return m′

– for clarity, we denote it as RLizard-1024 from this point onwards. All
multiplications in RLizard fit the structure that we target in this work.

NTRU-HRSS. The NTRU-HRSS scheme [HRSS17a] is based on the ‘clas-
sic’ NTRU cryptosystem [HPS98]. It starts from the CPA-secure NTRU
encryption scheme, and, like RLizard, applies Dent’s variant of the FO trans-
form [FO99, Den03] to construct a CCA-secure KEM. By restricting the pa-
rameter space compared to traditional NTRU, the scheme is simplified and
avoids implementation pitfalls such as decryption failures and fixed-weight
sampling. We look at the concrete instance as submitted to NIST [HRSS17b],
i.e., fix the parameters to p = 3, q = 8192 and n = 701. NTRU-HRSS relies
on arithmetic in a number of different rings. Glossing over the technical-
ities (see Sections 2 and 3 of [HRSS17a]), we reuse the notation to define
Φd = 1 + x

1 + x2 +⋯ + xd−1, and then define Rp = Z[x]p/Φn, R
′
q = Z[x]q/Φn

and Rq = Z[x]q/(xn − 1), but abstract away the transitions between rings.
Algorithms 29, 30, and 31 show that the scheme requires several multi-

plications and inversions. For this chapter, we focus on multiplications in
R′q and Rq. However, the same routine can be used to perform the multipli-
cation in Rp. Furthermore, as the inversion in R′q can be performed using
multiplications [HRSS17a], this benefits from the same optimization.

NTRUEncrypt. The NTRUEncrypt scheme [ZCHW17] is also based on the
standard NTRU construction [HPS98], but chooses parameters based on a re-
cent revisiting [HGSW05]. The NIST submission of NTRUEncrypt [ZCHW17]
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Algorithm 29 NTRU-HRSS.KeyGen ()

1: f, g ← SampleRp

2: f−1p ← f−1 ∈ Rp

3: f−1q ← f−1 ∈ R′q ▷ Uses mult. in Rq

4: h← Φ1 ∗ g ⍟ f
−1
q ∈ Rq

5: return (pk = p ⋅ h, sk = (f, f−1p )

Algorithm 30 NTRU-HRSS.Enc (m, (p ⋅ h))

1: r ← SampleRq

2: c← h′ ⍟ r +m ∈ Rq

3: return c

Algorithm 31 NTRU-HRSS.Dec (c, (f, f−1p ))

1: v ← c⍟ f ∈ Rq

2: m′ ← v ⍟ f−1p ∈ Rp

3: return m

presents several instantiations, but we limit ourselves to the instances where
q = 2k. We look at the parameter set NTRU-KEM-743, where p = 3, q = 2048,
and n = 743; the arithmetic takes place in the ring Rq = Zq[x]/(x

n − 1), but
coefficients are also reduced modulo p when moving to Rp. The optimiza-
tions in this work also carry over to the smaller NTRU-KEM-443 parameter
set, but not to NTRU-KEM-1024 (which uses a prime q). As before, the rel-
evant multiplication occurs when the noise polynomial r is multiplied with
the public key h, but we also utilize our multiplication routine for the other
multiplication in Dec. See the algorithmic descriptions in Algorithm 32, 33,
and 34.

Saber. Like Lizard and RLizard, Saber [DKRV17] also relies on the Learning-
with-Rounding problem. Rather than directly targeting LWR or the ring
variant, it positions itself in the middle-ground formed by the Module-LWR
problem. The submission conforms to the common pattern of proposing a
PKE scheme and then applying an FO variant [HHK17] to obtain a CCA-
secure KEM. We give descriptions of the PKE scheme in Algorithm 35, 36,
and 37. Like RLizard, Saber operates in the ring Rq = Zq[x]/(x

n + 1), and
in the smaller Rp. Because of the Module-LWR structure, however, n is
fixed to 256 for all parameter sets. Instead of varying the dimension of the
polynomial, Saber variants use matrices of varying sizes with entries in the
polynomial ring (denoted Rℓ×k). With the fixed q = 8192, this ensures that
an optimized routine for multiplication in Rq directly applies to the smaller
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Algorithm 32 NTRUEncrypt.KeyGen ()

1: f, g ← SampleRq

2: h← (p ⋅ g)/(p ⋅ f + 1) mod q
3: return (pk = h, sk = (f, h))

Algorithm 33 NTRUEncrypt.Enc (m,h)

1: r ← SampleRq
(m,h)

2: t← r ⍟ h
3: mmask ← SampleRq

(t)
4: m′ ←m −mmask mod p
5: c← t +m′

6: return c

Algorithm 34 NTRUEncrypt.Dec (c, (f, h))

1: m′ ← f ⍟ c mod p
2: t← c −m
3: mmask ← SampleRq

(t)
4: m←m′ +mmask mod p
5: r ← SampleRq

(m,h)
6: if p ⋅ r ⍟ h = t then
7: return m
8: else
9: return �

10: end if
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Algorithm 35 Saber.KeyGen ()

1: ρ← Sample{0,1}256
2: A← SampleRℓ×ℓ

q
(ρ)

3: s← SampleRℓ
q

4: b← ⌊A⍟ s + h⌉ ∈ Rℓ
p

5: return (pk = (ρ, b), sk = s)

Algorithm 36 Saber.Enc (m, (ρ, b))

1: A← SampleRl×l
q
(ρ)

2: s′ ← SampleRℓ
q

3: b′ ← ⌊A⍟ s′ + h⌉ ∈ Rℓ
p

4: v′ ← b⍟ ⌊s′⌉ ∈ Rp

5: cm ← ⌊v
′ + (p/2) ⋅m⌉ ∈ R2t

6: return (cm, b
′)

Algorithm 37 Saber.Dec ((cm, b
′), s)

1: v ← b′ ⍟ ⌊s⌉ ∈ Rp

2: m′ ← ⌊v − (p/(2t)) ⋅ cm + h⌉ ∈ R2

3: return m′
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Lightsaber and the larger Firesaber instances as well. Other parameters p
and t are powers of two smaller than q; for the Saber instance1, p = 1024 and
t = 8. The vector h is a fixed constant in Rℓ

q.
Note that some of the multiplications in Saber are in Rq and some are

in Rp; in our software both use the same routine. As we will explain in
Section 5.2, the smaller value of p would in principle allow us to explore a
larger design space for multiplications in Rp; However, for the small value
of n = 256 there is nothing to be gained in the additional multiplication
approaches.

Kindi. In the same vein as Saber, Kindi [Ban17] is based on a matrix of
polynomials, relating it to the Module-LWE problem. However, it relies on
a trapdoor construction which is somewhat more intricate than the stan-
dard approach. It constructs a CPA-secure PKE that is already close to a
key-encapsulation mechanism. Kindi operates in the polynomial ring Rq =
Zq[x]/(x

n+1) with q = 2k, the more generalRb = Zb[x]/(x
n+1) for some in-

teger b, and in the polynomial ring with integer coefficients R = Z[x]/(xn+
1). The relevant arithmetic primarily happens in Rq, though, meaning that
the performance of Kindi still considerably improves as a consequence of this
work. We consider the parameter set Kindi-256-3-4-2, where n = 256 and
q = 214.

In Algorithms 38, 39, and 40, we list the PKE. Here, g ∈ Rq is a constant,
ℓ = 3, p = 4, and [p] ∈ Rq is constant with all coefficients equal to p. We omit
public key compression and message encoding for ease of exposition. To
obtain a CCA-secure KEM, a slightly simplified version of the modular FO
variant [HHK17] is used: as Kindi exhibits a KEM-like structure and already
includes re-encryption in Dec, this results in merely adding hash-function
calls.

5.1.2 Arm Cortex-M4

Our target platform is the Arm Cortex-M4, which NIST recommended as
the reference platform for evaluation of post-quantum candidates on mi-
crocontrollers. For a detailed introduction of the Arm Cortex-M4 refer to
Section 2.4.1.

5.2 Multiplication in Z2m[x]
As discussed in the previous sections, we focus on multiplication in Rq,
where q = 2m. In particular, we approach this by looking at the non-reduced
multiplication in Z2m[x], as this is identical across all schemes we investigate.
The reduction is done outside of our optimized polynomial multiplication.

1Note that both the scheme and the category three parameter set are called Saber.
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Algorithm 38 Kindi.KeyGen()

1: µ← Sample{0,1}256
2: A← SampleRℓ×ℓ

q
(µ)

3: r, r′ ← SampleRℓ
q

4: b← A⍟ r + r′

5: return (pk = (b, µ), sk = (r,b, µ))

Algorithm 39 Kindi.Enc (m, (b, µ))

1: s1 ← SampleR2

2: A← SampleRℓ×ℓ
q
(µ)

3: p← b + g
4: s̄1 ← SampleRp

(s1)
5: (s2, . . . , sℓ) ← SampleRℓ−1

p
(s1)

6: s← (s1 + 2 ⋅ s̄1 − [p], s2 − [p], . . . , sℓ − [p]) ∈ R
ℓ
q

7: ū← Sample{0,1}n(ℓ+1) log 2p(s1)
8: u← ū⊕m
9: e← (u1 − [p], . . . ,uℓ − [p]) ∈ R

ℓ
q

10: eℓ+1 ← uℓ+1 − [p]
11: (c, cℓ+1) ← (A⍟ s + e,p⍟ s + g ⋅ [p] + e) ∈ Rℓ+1

q

12: return (c, cℓ+1)

Algorithm 40 Kindi.Dec (r,b, µ, (c, cℓ+1))

1: A← SampleRℓ×ℓ
q
(µ)

2: p← b + g
3: v ← cℓ+1 − c⍟ r
4: s1 ← (⌊v1/2

log q−1⌉, . . . , ⌊vn/2
log q−1⌉) ∈ R2

5: s̄1 ← SampleRp
(s1)

6: (s2, . . . , sℓ) ← SampleRℓ−1
p
(s1)

7: s← (s1 + 2 ⋅ s̄1 − [p], s2 − [p], . . . , sℓ − [p])
8: ū← Sample{0,1}n(ℓ+1) log 2p(s1)

9: (e, eℓ+1) ← (c −A⍟ s, cℓ+1 − p⍟ s) ∈ Rℓ+1
q

10: u← (e1 + [p], . . . eℓ + [p])
11: uℓ+1 ← eℓ+1 + [p]
12: m← u⊕ ū
13: return m
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Here, we describe the way we break down such a multiplication for a
specific number of coefficients n, modulo a specific q. This is done using
combinations of Toom-Cook’s and Karatsuba’s multiplication algorithms.
For a given n and q, there are multiple possible approaches; we explore the
entire space and select the optimum for each parameter set. We use Python
scripts that generate optimized assembly functions for all combinations, for
arbitrary-degree polynomials (with degrees below 1024). These scripts are
parameterized by the degree, the Toom method (see the next subsection;
Toom-3, Toom-4, both Toom-4 and Toom-3 or no Toom layer at all), and the
threshold at which to switch from Karatsuba to schoolbook multiplication.
See Section 5.3.1 for a detailed analysis of these results.

5.2.1 Toom/Karatsuba Strategies

The naive schoolbook approach to multiply two polynomials with n coef-
ficients results in n2 multiplications in Zq. Using well-known algorithms
by Karatsuba [KO63] (Section 2.2.2) and Toom-Cook [Too63, Coo66] (Sec-
tion 2.2.3), it is possible to trade some of these multiplications for additions
and subtractions.

Toom-Cook. It is important to note that there is a loss in precision when
using Toom’s method, as it involves division over the integers. While divi-
sions by three and five can be replaced by multiplications by their inverses
modulo 216, i.e., 43691 and 52429, this is not possible for divisions by pow-
ers of two. Consequently, Toom-3 loses one bit of precision, and Toom-4
loses three bits. Since our Karatsuba and schoolbook implementations op-
erate in Z216[x], this imposes constraints on the values of q for which our
implementations can be used; Toom-3 can be used for q ≤ 215, Toom-4 can
be used for q ≤ 213. These losses accumulate, and a combination of both
is only possible if q ≤ 212. This also rules out higher-order Toom methods.
While switching to 32-bit arithmetic would allow using higher-order Toom,
this slows down Karatsuba and the schoolbooks significantly by increasing
load-store overhead and ruling out DSP instructions.

While asymptotically Toom-4 is more efficient than Toom-3 and Karat-
suba, in practice the additions and subtractions also impact the run-time.
The increased number of memory accesses following a more intricate pattern
also significantly influence performance. Thus, for a given n it is not imme-
diately obvious in general which approach is the fastest. We first evaluate
whether to decompose using a layer of Toom-4, Toom-3, both Toom-4 and
Toom-3, or no Toom at all. We then repeatedly apply Karatsuba’s method
to break down the multiplications, up to the threshold at which it becomes
inefficient and the “naive” schoolbook method becomes the fastest approach.

Karatsuba. The call to the topmost Karatsuba layer is a function call, but
from that point on, we recursively inline the separate layers. Upon reaching

104



the threshold at which the schoolbook approach takes precedence, we jump
to the schoolbook multiplication through a function call.

This provides a trade-off that keeps code size reasonable and is flexible to
implement and experiment with, but does imply that the register allocation
between the final Karatsuba layer and the underlying schoolbook is disjoint;
it may prove worthwhile to look into this for specific n rather than in a
general approach.

As we perform several nested layers of Karatsuba multiplication, it is
important to carefully manage memory usage. We do not go for a completely
in-place approach (as is done in [KBMSRV18]), but instead allocate stack
space for the sums of the high and low limbs, relying on the input and
output buffers for all other terms. This leads to effective memory usage
without reducing performance.

Assembly-level optimizations. For both Toom and Karatsuba, the typi-
cal operations require adding and subtracting polynomials of moderate size
from a given address. We stress the importance of careful pipelining, load-
ing, and storing 16-bit coefficients pairwise into full-word registers, and using
uadd16 and usub16 arithmetic operations. We rely on offset-based instruc-
tions for memory operations, in particular for the more intricate memory
access patterns in Toom and Karatsuba. This leads to a slight increase
in code size compared to using ldm and stm, (and some bookkeeping for
polynomials exceeding the maximal offset of 4095 bytes), but ensures that
addresses are computed during code generation.

For ease of implementation, our code generator for Toom is restricted to
dimensions that divide without remainder. For Karatsuba, we do not restrict
the dimensions at all: the implementation can work on unbalanced splits,
and thus polynomials of unequal length. In order not to waste any memory or
cycles here (e.g., by applying common refinement approaches), the Python
script becomes a rather complex composition of conditionals; rather than
trying to combine pairs of 16-bit additions into uadd16 operations on the
fly, we run a post-processing step over the scheduled instructions to do so.

Rather than considering alignment to 32-bit word boundaries during code
generation, we use a post-processing step. After compilation, we disassemble
the resulting binary and expand Thumb instructions in cases where they
cause misalignment. This allows using the smaller Thumb instructions where
possible but avoids paying the overhead of misalignment. In particular, this
is important when an odd number of Thumb instructions is followed by a
large block of 32-bit instructions. The alignment post-processing is done
using a Python script that is included in our software package and may be
of independent interest.
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a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

Figure 5.1: Pairing coefficients to reduce the number of multiplications using
smladx / smlad. Dashed boxes represent multiplications involving repacked
b.

5.2.2 Small Schoolbook Multiplications

We investigate several approaches to perform the small-degree schoolbook
multiplications that underlie Karatsuba and Toom-Cook, varying the ap-
proaches and implementing distinct generation routines for different n. For
each approach, we keep the polynomial in packed representation, loading
all coefficients into the 32-bit registers in pairs. The Armv7E-M instruction
set provides multiplication instructions that efficiently operate on data in
this format: parallel multiplications, but also instructions that operate on a
specific half-word.

For n ≤ 10, all input coefficients can be kept in registers simultaneously,
with registers remaining to keep the pointers to the source and destination
polynomials around. We first compute all coefficients of terms with odd
exponents, before using pkh instructions to repack one of the input polyno-
mials and computing the remaining coefficients. This ensures that the vast
majority of the multiplications can be computed using the two-way parallel
multiply-accumulate dual instructions. See Figure 5.1 for an illustration of
this; here, b is repacked to create the dashed pairs. This is somewhat similar
to the approach used in [KBMSRV18], but ends up needing less repacking
and memory interaction.

For n ∈ {11,12}, we spill the source pointers to the stack after loading the
complete polynomials. At these dimensions, the registers are used to their
full potential, and by using the DSP instructions we end up needing only 78
multiplications; 66 combined multiplications, 12 single multiplications, and
not a single dedicated addition instruction. This offsets the extra cost of the
six packing instructions considerably. For n ∈ {13,14}, not all coefficients fit
in registers at the same time, leading to spills for the middle columns (i.e.,
the computation of coefficients around xn, which are affected by all input
coefficients). Even when using the Python abstraction layer, manual register
allocation becomes somewhat tedious in cases that involve many spills to the
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Figure 5.2: Decomposing larger schoolbook multiplications

stack. To remedy this, we use bare-bone register-allocation functions akin
to the scripts in [HRSS17a].

For larger n, the above strategy leads to an excessive amount of register
spills. Instead, we compose the multiplication of a grid of smaller instances.
For 15 ≤ n ≤ 24, we compose the multiplication out of four smaller multipli-
cations, for 25 ≤ n ≤ 36, we use a grid of nine multiplications, etc. Note that
we use at most n = 12 for the building blocks, given the extra overhead of
the register spills for n ∈ {13,14}. We further remark that it is important to
carefully schedule the (re)loading and repacking of input polynomials. We
illustrate this in Figure 5.2.

The approach described above works trivially when n is divisible by ⌈ n
12
⌉,

but leads to a less symmetric pattern for other dimensions. We plug these
holes by starting from an n that divides even, and either adding a layer
‘around’ the parallelogram or nullifying the superfluous operations in a post-
processing step.

Figure 5.3 shows the performance of these routines; see Table 5.1 for
more details.

5.3 Results and Discussion

In this section, we present benchmark results for polynomial multiplication,
and for key generation, encapsulation, and decapsulation of the five NIST
post-quantum candidates Kindi, NTRUEncrypt, NTRU-HRSS, RLizard, and
Saber. For each of the schemes, we have tried to select the parameter set
which targets NIST security category three. However, NTRU-HRSS only
provides a category one parameter set, hence we use this. Furthermore,
the reference implementations for the category three parameter sets of Kindi
require more than 128 KiB of RAM and consequently do not trivially fit
our platform (STM32F4DISCOVERY). We use Kindi-256-3-4-2 instead, which
targets security category 1.

All cycle counts presented in this section were obtained by using an
adapted version of the pqm4 benchmarking framework [KPR+], which uses
the built-in 24-bit SysTick timer. Stack measurements were also obtained
using the method implemented in pqm4, i.e., by writing dummy values to the
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Figure 5.3: Runtime of generated optimized polynomial multiplication for
small n. For n < 20 our hand-optimized schoolbook multiplications are
clearly superior, for n > 36 first applying at least one layer of Karatsuba is
faster.

entire memory available for the stack, running the scheme under test, and
subsequently checking how much of the dummy values were overwritten.

5.3.1 Multiplication Results

We first present results for polynomial multiplication as a building block.
We report benchmarks for the multiplication for all possible n < 1024, using
different approaches to evaluate which strategy is optimal.

Figure 5.3 shows the run-time of our hand-optimized schoolbook imple-
mentations and the generated optimized Karatsuba code for small n. For
the Karatsuba benchmarks, we have selected the optimal schoolbook thresh-
old, e.g., for n = 32 one could either apply one layer of Karatsuba and then
use the schoolbook method for n = 16 or, alternatively, use two layers of
Karatsuba and use schoolbook multiplications for n = 8. The former vari-
ant is faster in this scenario, which leads to a schoolbook threshold of 16.
For each n, we simply iterated over all schoolbook thresholds and selected
the fastest variant. The graph shows that directly applying the schoolbook
method is superior for n < 20, and for n > 36 Karatsuba outperforms school-
book. However, for values in between, the plot is inconclusive. A large
cause of this is the amount of hand-optimization that went into some of our
schoolbook implementations, but it is also strongly determined by register
pressure: there is a large performance hit in the step from n = 14 to n = 15,
which then propagates to dimensions that break down to these schoolbook
multiplications using Karatsuba. For cryptographically relevant values we
found that the cross-over point is at n = 22, i.e., for values n > 22 one should
use an additional layer of Karatsuba.

Figure 5.4 shows the performance of the different multiplication ap-
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proaches for larger n. While that general trend is visible, one still observes a
jagged line. We speculate that the main cause for this is similar to the irreg-
ularities in Figure 5.3: the variance in the increasing cost of the schoolbooks
is magnified as n grows larger and specific schoolbook sizes are repeated
in the decomposition of large multiplications. Because of the difference in
decomposition between Toom-3 and Toom-4, this favors each method for
different ranges for n, resulting in alternating optimality. Another factor
that is impacted by specific decomposition is the resulting memory access
pattern, and, by extension, data alignment, resulting in a large performance
penalty. In practice, comparing benchmarks for specific n seems to be the
only way to come to conclusive results. In particular, we observe that the
lines are not even monotonically increasing; note that it is trivially possible
to pad a smaller-degree polynomial and use a larger multiplication routine
to benefit from a more efficient decomposition.

As Figure 5.4 does not allow us to identify which method performs
best for clear bounds on n, we instead focus on individual n as relevant
for the five cryptographic schemes we intend to cover. This restricts n to
{256,701,743,1024}. In Table 5.2, we report the cycle counts alongside
the required additional stack space for each of the multiplication methods.
All cycle counts are for polynomial multiplication excluding subsequent re-
duction required to obtain an n-coefficient polynomial; additional cost for
reduction differs depending on the specific choice of ring. While there is
some performance benefit in performing the reduction inline, the main gain
is in stack usage. For the Toom variants, this allows for in-place recomposi-
tion, reducing stack usage by roughly 2n coefficients. This is not trivial for
Karatsuba, though, introducing some additional complexity. We leave this
for future work.

For the rather small n = 256 (Saber, Kindi), we already see that Toom-4
(followed by two layers of Karatsuba) is slightly faster than directly apply-
ing Karatsuba. As the difference is small, however, one might decide to
not use a Toom layer at all, at the benefit of a much simpler implementa-
tion and considerably reduced stack usage. Toom-4 is not suitable for Kindi
(n = 256, q = 214), as q is too large. Again the impact is marginal, though,
as Karatsuba is only a few percent slower at this dimension, also performing
just above Toom-3. For larger n ∈ {701,743,1024} (NTRU-HRSS, NTRU-
Encrypt,RLizard) applying Toom-4 is most efficient. The second layer ends
up in the same range of small n, where it is a close competition between
applying Toom-3 or directly switching to recursive Karatsuba.
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Figure 5.4: Runtime of different decomposition variants for large-degree mul-
tiplications.

Table 5.1: Benchmarks for small schoolbook multiplication routines. The
cycle counts include an overhead of approximately 50 cycles for benchmark-
ing.

n cycles
1 56
2 59
3 69
4 74
5 85
6 92
7 107
8 114
9 131
10 140
11 168
12 177

n cycles
13 232
14 252
15 341
16 343
17 467
18 466
19 508
20 510
21 626
22 626
23 670
24 672

n cycles
25 926
26 1 057
27 1 057
28 1 168
29 1 167
30 1 170
31 1 264
32 1 266
33 1 431
34 1 547
35 1 546
36 1 549

n cycles
37 1 965
38 1 966
39 1 963
40 1 965
41 2 294
42 2 588
43 2 595
44 2 594
45 2 824
46 2 825
47 2 822
48 2 824
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Table 5.2: Benchmarks for polynomial multiplication excluding reduction.
Fastest approach is highlighted in bold. The ‘Toom-4 + Toom-3’ and ‘Toom-
4’ approaches are not applicable to all parameter sets, as q may be too large.

approach threshold cycles stack

Saber
(n = 256, q = 213)

Karatsuba only 16 38 000 2 020
Toom-3 11 39 043 3 480
Toom-4 16 36 274 3 800

Kindi-256-3-4-2
(n = 256, q = 214)

Karatsuba only 16 38 000 2 020
Toom-3 11 39 043 3 480

NTRU-HRSS
(n = 701, q = 213)

Karatsuba only 11 202 889 5 676
Toom-3 15 205 947 9 384
Toom-4 11 172 882 10 596

NTRU-KEM-743
(n = 743, q = 211)

Karatsuba only 12 217 130 6 012
Toom-3 16 211 588 9 920
Toom-4 12 186 639 11 208
Toom-4 + Toom-3 16 192 503 12 152

RLizard-1024
(n = 1024, q = 211)

Karatsuba only 16 356 046 8 188
Toom-3 11 352 770 13 756
Toom-4 16 302 504 15 344
Toom-4 + Toom-3 11 310 712 16 816
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5.3.2 Encapsulation and Decapsulation Results

In this section, we present our performance results for RLizard, Saber, Kindi,
NTRUEncrypt, and NTRU-HRSS. All the software presented in this section
started from the reference implementations submitted to NIST but went con-
siderably further than just replacing the multiplication routines with the op-
timized routines described in Section 5.2. For Saber, we considered starting
from the already optimized implementation by Karmakar, Bermudo Mera,
Sinha Roy, and Verbauwhede [KBMSRV18], but achieved marginally better
performance starting from the reference code. We start by describing the
changes that apply to the reference implementations; some of these changes
might be more generally advisable as updates to reference software.

Memory allocations. The reference implementations of Kindi, RLizard,
and NTRUEncrypt make use of dynamic memory allocation on the heap.
The RLizard implementation does not free all the allocated memory, which
results in memory leaks; also it misinterprets the NIST API and assumes
that the public key is always stored right behind the secret key. This may
result in reads from uninitialized (or even unallocated) memory. Luckily
none of the implementations require dynamically allocated memory; the size
of all allocated memory is reasonably small and known at compile time.
We eliminated all dynamic memory allocations and our software thus only
relies on the stack to store temporary data. Our benchmarks show that this
significantly improves performance.

Hashing. The five NIST candidates we optimize in this chapter make use
of variants of SHA-3 and SHAKE [NIS15b] and of SHA-512 [NIS15a]. For
SHA-3 and SHAKE we use the optimized assembly implementation from
pqm4 [KPR+], which makes use of the optimized Keccak-permutation from
the Keccak Code Package [DHP+]. For SHA-512, we use a C implementation
from SUPERCOP [BL].

Comparison to reference code. Table 5.3 presents performance results
for the optimized implementations as well as the reference implementations
with the modifications described above. For all schemes targeted in this
chapter, we dramatically increase the performance; the improvements go up
to a factor of 49 for the key generation of RLizard-1024. Since both Karat-
suba and Toom-Cook require storing additional intermediate polynomials
on the stack, we increase stack usage for all schemes except Kindi-256-3-
4-2. The reference implementations of Kindi-256-3-4-2 already contained
optimized polynomial multiplication methods, which were implemented in a
stack-inefficient manner.

Side-channel resistance. While side-channel resistance was not a focus
of this work, we ensured that our polynomial multiplication is protected
against timing attacks. More specifically, in the multiplication routines, we
avoid all data flow from secrets into branch conditions and into memory
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Table 5.3: Benchmarks for reference implementations and optimized imple-
mentations using fastest multiplication approach. Reporting run-time (cycle
count) and stack usage (bytes) for key generation (K), encapsulation (E),
and decapsulation (D).

implementation clock cycles stack usage
[bytes]

Saber

Reference
K: 6 530k K: 12 616
E: 8 684k E: 14 896
D: 10 581k D: 15 992

[KBMSRV18]
K: 1 147k K: 13 883
E: 1 444k E: 16 667
D: 1 543k D: 17 763

This work
K: 895k K: 13 248
E: 1 161k E: 15 528
D: 1 204k D: 16 624

Kindi-256-3-4-2

Reference
K: 21 794k K: 59 864
E: 28 176k E: 71 000
D: 37 129k D: 84 096

This work
K: 969k K: 44 264
E: 1 320k E: 55 392
D: 1 517k D: 64 376

NTRU-HRSS

Reference
K: 205 156k K: 10 020
E: 5 166k E: 8 956
D: 15 067k D: 10 204

This work
K: 145 963k K: 23 396
E: 404k E: 19 492
D: 819k D: 22 140

NTRU-KEM-743

Reference
K: 59 815k K: 14 148
E: 7 540k E: 13 372
D: 14 229k D: 18 036

This work
K: 5 198k K: 25 320
E: 1 601k E: 23 808
D: 1 881k D: 28 472

RLizard-1024

Reference
K: 26 423k K: 4 272
E: 32 156k E: 10 532
D: 53 181k D: 12 636

This work
K: 525k K: 27 720
E: 1 345k E: 33 328
D: 1 716k D: 35 448
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Table 5.4: Benchmarks on the Cortex-M4 for other KEMs submitted to
NISTPQC project.

implementation clock cycles stack usage

R5ND 1PKEb [SBGM+18]
K: 658k K: ?
E: 984k E: ?
D: 1 265k D: ?

R5ND 3PKEb [SBGM+18]
K: 1 032k K: ?
E: 1 510k E: ?
D: 1 913k D: ?

NewHopeCCA1024 [KPR+, AJS16]
K: 1 244k K: 11 152
E: 1 963k E: 17 448
D: 1 979k D: 19 648

Kyber768 [KPR+]
K: 1 200k K: 10 544
E: 1 446k E: 13 720
D: 1 477k D: 14 880

addresses. The special multiplication routine in [SBGM+18] is less con-
servative and does use secret-dependent lookup indices with a reference
to [ARM12] saying that the Cortex-M4 does not have internal data caches.
However, it is not clear to us that really all Cortex-M4 cores do not have
any data cache; [ARM12] states that the “Cortex-M0, Cortex-M0+, Cortex-
M1, Cortex-M3, and Cortex-M4 processors do not have any internal cache
memory. However, it is possible for a SoC design to integrate a system level
cache.” Also, it is clear that some Armv7E-M processors (for example, the
Arm Cortex-M7) have data caches and our multiplication code is timing-
attack protected also on those devices.

Key-generation performance. The focus of this chapter is to improve
performance of encapsulation and decapsulation. All KEMs considered in
this chapter are CCA-secure, so the impact of a poor key-generation per-
formance can in principle be minimized by caching ephemeral keys for some
time. Such caching of ephemeral keys makes software more complex and
in some cases also requires changes to higher-level protocols; we, therefore,
believe that key-generation performance, also for CCA-secure KEMs, re-
mains an important target of optimization. The key generation of RLizard,
Saber, and Kindi is rather straightforwardly optimized by integrating our
fast multiplication. The key generation of NTRUEncrypt and NTRU-HRSS
also requires inversions, which we did not optimize in this chapter; we be-
lieve that further research into efficient inversions for those two schemes will
significantly improve their key-generation performance.

Comparison to previous results. To the best of our knowledge, Saber is
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the only scheme of those considered in this chapter that has been optimized
for the Arm Cortex-M family in previous work [KBMSRV18]. Table 5.4 con-
tains the performance result on the same platform as ours. Our optimized
implementation outperforms the CHES 2018 implementation by 22% for key
generation, 20% for encapsulation, and 22% for decapsulation. Karmakar,
Bermudo Mera, Sinha Roy, and Verbauwhede report 65 459 clock cycles for
their optimized 256-coefficient polynomial multiplication, but we note that
their polynomial multiplication includes the reduction. Including the reduc-
tion, our multiplication requires 38 215 clock cycles, which is 42% faster. On
a more granular level, they claim 587 cycles for 16-coefficient schoolbook
multiplication, while we require only 343 cycles (see Table 5.1; this includes
approximately 50 cycles of benchmarking overhead).

Several other NIST candidates have been evaluated on the Cortex-M4
family. We also list the performance results in Table 5.4 for compari-
son. Most recently, record-setting results were published for Round52 on
Cortex-M4 [SBGM+18]. The fastest scheme described in our work, targeting
NIST security category 1, NTRU-HRSS, is 59% faster for encapsulation and
35% faster for decapsulation compared to the corresponding CCA variant
of Round5 at the same security level. The key generation of NTRU-HRSS
is considerably slower, but its inversion is not optimized yet. The fastest
scheme implementation described here that targets NIST security category
3, Saber, is 13% faster for key generation, 23% faster for encapsulation, and
37% faster for decapsulation There are also optimized implementations for
NewHopeCCA1024 [KPR+, AJS16] and Kyber768 [KPR+]. Both implemen-
tations are outperformed by NTRU-HRSS and Saber.

5.3.3 Profiling of Optimized Implementations

The speed-up achieved by optimizing polynomial multiplication clearly shows
that it vastly dominates the runtime of reference implementations. Having
replaced this core arithmetic operation with highly optimized assembly, we
analyze how much time the optimized implementations still spend in non-
optimized code to capture how much performance could still be gained by
hand-optimizing scheme-specific procedures. We achieve this by measuring
the clock cycles spent in polynomial multiplication, hashing, and random
number generation. Table 5.5 shows that still a considerable proportion of
encapsulation and decapsulation is spent in polynomial multiplication. How-
ever, cycles consumed by hashing and randomness generation become more
prominent. In the following, we briefly discuss these results and emphasize
how one could further speed up those schemes.

Hashing. For encapsulation, hashing (SHA-3 and SHA-2) dominates the
run-time of Kindi-256-3-4-2, NTRU-KEM-743, and Saber. We have replaced

2R5ND {1,3,5}PKEb are the CCA-variants of Round5, whereas R5ND {1,3,5}KEMb are
CPA-secure.
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Table 5.5: Time spent in multiplication, hashing, and sampling randomness.

scheme total polymul hashing random

Saber
K: 895k 327k (37%) 475k (53%) 2.0k
E: 1 161k 435k (38%) 615k (53%) 0.6k
D: 1 204k 544k (45%) 500k (42%) 0

Kindi-256-3-4-2
K: 969k 342k (35%) 409k (42%) 1.2k
E: 1 320k 456k (35%) 604k (46%) 0.6k
D: 1 517k 570k (38%) 603k (40%) 0

NTRU-HRSS
K: 145 963k 1 556k (1%) 80k (<1%) 0.6k
E: 404k 173k (43%) 107k (26%) 0.6k
D: 819k 519k (63%) 67k (8%) 0

NTRU-KEM-743
K: 5 198k 1 680k (32%) 0 85k
E: 1 601k 187k (12%) 1 171k (73%) 46k
D: 1 881k 373k (20%) 1 172k (63%) 0

RLizard-1024
K: 525k 303k (58%) 0 123k
E: 1 345k 605k (45%) 628k (47%) 2.2k
D: 1 716k 908k (53%) 628k (36%) 0

these primitives with the fastest implementations available. Still, all schemes
spend a substantial number of clock cycles computing hashes. This is partly
due to the Fujisaki-Okamoto transformation required to achieve CCA se-
curity. Further hash function calls are required to sample pseudo-random
numbers from a seed, which most schemes implement using the SHAKE XOF.
Having a hardware accelerator for these hash functions would highly improve
the performance of all of the examined schemes. While Arm Cortex-M4 plat-
forms with SHA-2 hardware support exist, there are (at the time of writing)
none available which have SHA-3 hardware support.

Randomness generation. Kindi-256-3-4-2, NTRU-HRSS, and Saber do not
make use of randombytes extensively, but sample a small seed and then ex-
pand this using SHAKE. RLizard-1024 and NTRU-KEM-743 directly sample
their randomness using randombytes. As we implement randombytes using
the hardware RNG on the STM32F4Discovery, it is more efficient than using
SHAKE to expand a seed. There are, however, important caveats to con-
sider when only using the hardware number generator. It is unclear what
the cryptographic properties of such an RNG are, and how this affects the
security of the various schemes, in particular since most reveal randomness
as part of the CCA transform.
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Chapter 6

NTT Multiplication for
NTT-unfriendly Rings

This chapter is based on work published in

Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwis-
cher, Gregor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT
multiplication for NTT-unfriendly rings – new speed records for
Saber and NTRU on Cortex-M4 and AVX2. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(2):159–
188, 2021. https://eprint.iacr.org/2020/1397

It studies the application of NTT-based multiplication to lattice-based
KEMs using polynomial rings which were not specifically chosen to support
NTT multiplication. As such this work targets some schemes that were also
covered in Chapter 5, but results in much faster implementations.

There seems to be a common conception that schemes that were not
specifically designed to benefit from NTT-based multiplication by using an
NTT-friendly ring cannot be efficiently implemented using NTTs and, hence,
one has to fall back to other multiplication algorithms like Karatsuba mul-
tiplication [KO63] or Toom–Cook multiplication [Too63, Coo66]. Among
the NISTPQC finalists, this applies to two schemes: Saber [DKRV17] and
NTRU [ZCH+19]. Both use a power-of-two modulus which is inherently in-
compatible with straightforward NTTs. Previous implementations of Saber
and NTRU use a combination of Toom-4 and Karatsuba to implement ef-
ficient polynomial arithmetic. However, as we show in this work, it is still
possible to use NTTs to implement their underlying polynomial arithmetic
and obtain superior performance compared to the state-of-the-art implemen-
tations both on the Arm Cortex-M4 and AVX2.
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Leaving the performance aspect aside, it is also interesting to be able
to implement all lattice-based schemes with the same algorithms from an
ease of implementation point of view. Furthermore, this way all schemes
can benefit from potential future hardware support for computing NTTs.
Because of these reasons we think that even a small increase in runtime
may be acceptable when using NTT-based multiplication instead of other
methods.

The Chinese Association for Cryptologic Research (CACR) sponsored a
competition similar to that of NIST between 2018 and 2019 [CAC19]. All
three First Class Award winners were small lattice-based systems. Two of
them, styled Aigis-ENC and Aigis-Sign, resemble Kyber and Dilithium in
their design (see [ZYF+20], where the authors detail their deviations from
Kyber and Dilithium). The other, LAC [LLJ+17], has a very small prime
modulus (q = 251) which is not suited to NTTs, and the designers suggest
a sparse multiplication technique instead. We show that NTTs can be used
to obtain performance superior to all previous implementations.

Contribution. We show how NTTs can be used to obtain efficient poly-
nomial arithmetic in finite fields modulo a power of two. We present new
implementations of Saber, LAC, and NTRU targeting the Arm Cortex-M4
and AVX2 which are faster than any implementations described in the lit-
erature for the majority of parameter sets. Only for ntruhps2048509 we
were unable to obtain a speed-up on AVX2. Interestingly, our two platforms
require different multiplication strategies due to limitations of the available
multiplication instructions.

Code. Our implementations of Saber, LAC, and NTRU are Open Source
and are available at https://github.com/ntt-polymul/ntt-polymul. All
source code related to this thesis is also available in a single archive. See
Appendix A.

Related Work. Concurrent work [FSS20] presents a Saber implementation
of a similar NTT-based approach targeting a RISC-V core with a tightly
coupled hardware accelerator but did not obtain better performance than
their Toom–Cook implementation.

Structure of this Chapter. Section 6.1 describes Saber, LAC, and NTRU
and the background of the techniques required to implement polynomial
arithmetic using NTTs for each. Section 6.2 presents the implementation
details on the Cortex-M4. Section 6.3 presents the implementation details
for AVX2 on Skylake. In Section 6.4, we present the performance results for
Saber, LAC, and NTRU on our target platforms.
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Algorithm 41 LAC Key Generation

Output: pk = (seeda, b), sk = (s)

1: seeda ← SampleU()
2: a ∈ Rq ← Expand(seeda)

3: s, e ∈ R
(h)
q ← SampleB()

4: b← as + e

Algorithm 42 LAC CPA Encryption

Input: m,pk = (seeda, b)
Output: ct = (c1, c2)

1: a ∈ Rq ← Expand(seeda)
2: m̂ = ECCEnc(m)
3: r, e1 ∈ Rq ← SampleB()
4: e2 ∈ Rq ← SampleB′()
5: c1 ← ar + e1
6: c2 ← (br)lv + e2 + ⌊

q
2
⌉ m̂

6.1 Preliminaries

This section is organized as follows: First, we introduce the cryptographic
scheme LAC (Section 6.1.1); for Saber and NTRU refer to the previous chapter
(Section 5.1). Second, Section 6.1.2 introduces the NTT techniques that can
be used to implement polynomial arithmetic.

6.1.1 LAC

LAC [LLJ+17] is a lattice-based key-encapsulation mechanism based on the
Ring Learning with Errors (RLWE) problem. The polynomial ring used
in LAC is Rq = Zq[x]/(x

n + 1) with q = 251 and n = 512 for LAC-128 and
n = 1024 for LAC-192 and LAC-256. Like most other lattice-based schemes,
LAC constructs a CCA-secure KEM from a CPA-secure PKE.

Algorithm 41, Algorithm 42, and Algorithm 43 depict the CPA-secure
key generation, encryption, and decryption, respectively. SampleU refers to
sampling from a uniform distribution and SampleB refers to sampling from a
fixed-weight ternary distribution. SampleB′ refers to sampling from a ternary
distribution. Expand expands a seed to a uniform matrix of polynomials.
(⋅)lv means to take the first lv coefficients of a polynomial as a vector. We
omit the CCA variants for brevity and refer the reader to the specification
for the corresponding CCA transformation. LAC’s major operations are
multiplications (as, ar, br, c1s).
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Algorithm 43 LAC CPA Decryption

Input: ct = (c1, c2), sk = (s)
Output: m = ECCDec(m̂)

1: m̃← c2 − (c1s)lv
2: m̂← Round(m̃)

Table 6.1: LAC Parameters

name n lv B B′

LAC-128 512 511 ( 1
4
; 1
2
; 1
4
)
n
( 1
4
; 1
2
; 1
4
)
lv

LAC-192 1024 511 ( 1
8
; 3
4
; 1
8
)
n
( 1
8
; 3
4
; 1
8
)
lv

LAC-256 1024 1023 ( 1
4
; 1
2
; 1
4
)
n
( 1
4
; 1
2
; 1
4
)
lv

Parameters. LAC specifies the three parameter sets LAC-128, LAC-192, and
LAC-256 targeting the NIST security levels one, three, and five, respectively.
The parameters are summarized in Table 6.1.

CCA Transform. To achieve CCA security, LAC is using a variant of the
FO transform due to Hofheinz, Hövelmanns, and Kiltz [HHK17], similar to
Saber. For technical details on the FO transform, refer to the specifica-
tion [LLJ+17].

6.1.2 FFT-based Polynomial Multiplications and NTT

In NTRU, LAC, and Saber, we need to multiply in the following rings:
Z8192[x]/ (x

256 + 1), Z2048[x]/ (x
509 − 1), Z251[x]/ (x

512 + 1),

Z2048[x]/ (x
677 − 1), Z8192[x]/ (x

701 − 1), Z4096[x]/ (x
821 − 1), and

Z251[x]/ (x
1024 + 1).

In Saber, we actually need more: a matrix-vector product and an in-
ner product based on that ring multiplication. Below, we describe tools to
construct those multiplications.

We make use of incomplete NTTs (see Section 2.2.7) and Good’s trick
(Section 2.2.8). The NTTs are implemented using radix-2 FFTs (see Sec-
tion 2.2.5) and mixed-radix FFTs (see Section 2.2.6). However, the above
rings are not immediately suitable for NTT-based polynomial multiplication.
We instead propose to lift ring elements to a different ring that is suitable
for FFTs as described in the following section.

NTTs with Modulus not of the form 2kp′ + 1. Suppose we have a
convolution modulo xn − 1 modulo q, where n ∤ (q − 1). We can express
the polynomials with coefficients in [− q

2
; q
2
) and compute the convolution

as a polynomial with integer coefficients. The absolute magnitude of the
resulting coefficients would be at most nq2/4. Therefore, if we find a prime
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p > nq2/2 such that n ∣ (p−1), and compute the multiplication mod p (which
we can compute using NTTs of length n mod p), then the result must be
correct as a polynomial with integer coefficients, and then we can recover
our correct result modulo q.

The procedure is quite similar if it is a different kind of convolution or
another product. In the case of our applications (Saber and NTRU), one
of the multiplicands is usually “small” so that we can use an even smaller
prime.

Multiple Moduli and the Explicit CRT. Again, suppose we have a
convolution modulo xn−1 modulo q, where n ∤ (q−1). A different possibility
is to take various NTT-friendly primes pi whose product P is sufficiently large
(usually > nq2/2). Clearly computing the multiplication mod P must return
the correct product as a polynomial with integer coefficients. This we can
do by computing the product modulo each pi using NTTs. There are at
least two methods to put the pieces together modulo P , from which we can
compute our correct results. One is via the Explicit Chinese Remainder
Theorem [BS07]. The other is the following approach:

Theorem 1 Let pi > 0 be odd, pairwise co-prime (gcd(pi, pj) = 1 for 1 ≤ i <
j ≤ s). An explicit solution u of u ≡ ui (mod pi), i = 1 . . . s, where ∣ui∣ < pi/2,
where ∣u∣ < P /2 = ∏

s
i=1 pi/2, is given by

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1 = u1
y2 = y1 + ((u2 − y1)m2 mod ±p2)p1
y3 = y2 + ((u3 − y2)m3 mod ±p3)p1p2
⋮ ⋮

u = ys = ys−1 + ((us − ys−1)ms mod ±ps)p1⋯ps−1

where each mi ∶= (p1⋯pi−1)
−1

mod ±pi.

The theorem is also true for a non-centered mod and is faster than [BS07]
for small s.

6.2 NTTs on the Cortex-M4

On Cortex-M4, we commonly compute three layers of radix-2 NTTs at a
time similarly as [ACC+21b]. We provide details specific to the schemes in
the following subsections.

6.2.1 Saber

For Saber, we replace the polynomial multiplications in the subroutines
InnerProd and MatrixVectorMul using the negacyclic NTT trick to elim-
inate all Toom-4 multiplications in Saber. In the interest of brevity, we
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only detail MatrixVectorMul (which takes most of the time) that multiplies
an l × l matrix with an l × 1 vector, where each component is an element
of Zq[x]/(x

256 + 1). The design of Saber provides additional incentives to
use NTTs because the matrix-to-vector product is turned into a matrix-to-
vector point-multiplication in the NTT domain. More concretely, we do not
merely save the difference in cycles between Toom-4 and NTT-based degree-
255 polynomial multiplications, because to compute the l2 multiplications
in MatrixVectorMul, we only need to compute l2 + l NTTs and l NTTs−1

instead of 2l2 NTTs and l2 NTTs−1 as normally might be expected.
Our NTT-based MatrixVectorMul, therefore, proceeds as follows: com-

pute the size-256 (incomplete) negacyclic NTT for each component in the
matrix and the vector, multiply the matrix by the vector, accumulate the
result to a vector, and then compute the NTTs−1 for each component.

Choosing the best incomplete NTT. When using incomplete NTTs we
need to choose the point at which we stop doing NTT butterfly operations
and simply multiply the polynomials using schoolbook multiplication. The
obvious choices are eight layers of NTTs, seven layers of NTTs followed by
2× 2 schoolbooks, six layers of NTTs followed by 4× 4 schoolbooks, and five
layers of NTTs followed by 8×8 schoolbooks. First, we compare the behavior
of incomplete NTTs. On a Cortex-M4, among the 14 general-purpose regis-
ters, we need one register for loading coefficients, one register for loading the
twiddle factors ζ, two registers for constants used in Montgomery multiplica-
tion, and two registers as temporary storage for Montgomery multiplication
in the schoolbook multiplication.

There are only eight remaining registers that can be used to compute at
most three layers of NTTs without incurring overhead.

Computing five layers of NTTs would not achieve the economical use
of registers, since we can compute an additional layer without spilling the
registers, i.e., with minimal cost. Computing seven layers of NTTs would
involve a lot of vmovs because of the lack of registers. For Saber, we achieve
the best performance when doing six layers of NTTs. This can be explained
by comparing 4×4 schoolbook multiplication and size-4 NTTs. For simplic-
ity, we will focus on an l-dimensional matrix-to-vector product in which each
component is a four-coefficient polynomial. A 4×4 schoolbook multiplication
requires seven smulls, 12 smlals, and seven Montgomery reductions. For
accumulation, each l-dimensional row-column inner product requires 4l − 4
adds and 4l − 4 vmovs for temporary storage. Therefore, 41l2 − 8l cycles
are required for the 4 × 4 schoolbook approach. To use a size-4 NTT trick,
we calculate the size-4 NTT of each component, multiply components by
components with point-multiplication, accumulate to a vector, and finally,
compute the size-4 NTT−1 of each component. Each size-4 NTT requires
4 Montgomery multiplications and four add-sub pairs. Since only 14 regis-
ters are available, we need to vmov 4 ⋅ (2 ⋅ (l − 1) + l) ⋅ l = 12l2 − 8l times to
store intermediate values for accumulation. If the NTT trick is adopted, the
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matrix-to-vector product would require 20l2 + 40l cycles for l2 + l NTTs and
l NTTs−1, l2 Montgomery multiplications, 12l2 −8l vmovs, and 4l2 −4l adds,
resulting in 39l2 + 28l cycles. We have 41l2 − 8l < 39l2 + 28l for l < 18.

Hence, we compute incomplete (six layer) NTTs followed by 4×4 school-
book as it gives the best performance for Saber. To compute a0 ⋅ b0 + a1 ⋅
b1 + a2 ⋅ b2 (mod q′) using Montgomery reductions, we only need one smull,
two smlal, and one Montgomery reduction instead of computing three mul-
tiplications, each followed by a Montgomery reduction, adding the results
together, and then reducing modulo q′ again. Furthermore, this idea also
applies where each ai ⋅ bi is a degree-3 schoolbook.

Better Accumulation For Schoolbook Multiplication. There is an
even better approach to matrix-to-vector products utilizing the commuta-
tivity of instructions. All adds and some Montgomery reductions can be
removed at the cost of some additional vmovs. Consider one inner prod-
uct h = ∑

3
i=0 pi ⋆ qi where ⋆ is multiplication (mod z4 − ζ). Now [z0]h =

Σ
i
(pi0qi0 + ζ(pi1qi3 +pi2qi2 +pi3qi1)) is its constant term.1 So we can com-

pute the 64-bit value of [z0]h and then reduce it to 32-bit using Montgomery
reduction, wherein all the adds can be absorbed (changing some smull into
smlal). To summarize, we save 4l2 − 4l adds and 4l2 − 4l Montgomery re-
ductions (each of which takes two cycles) at the cost of 8l2 − 8l vmovs and,
therefore, the cycle count becomes 37l2 − 4l, which is smaller than 39l2 + 28l
for all l. We find that the above approach is hard to beat regardless of l.

Our Optimized Negacyclic NTT Trick. Since incomplete size-256 nega-
cyclic NTTs are computed, we choose prime q′ = 25166081 = 196610 ⋅ 128+ 1
for Saber and Firesaber, and prime q′ = 20972417 = 163847 ⋅ 128 + 1 for
Lightsaber. We compute NTTs with six layers of radix-2 NTTs (CT but-
terflies), where the first three layers are merged and the following three
layers are merged, then compute schoolbook-and-accumulate with the above
strategy, and finally compute incomplete size-256 negacyclic NTTs−1 using
GS butterflies with the same 3-layer merge.

6.2.2 NTRU

In this section, we go into implementation details for polynomial multipli-
cation in NTRU on Cortex-M4. We are targeting the first two poly Rq muls
and the first poly Sq mul in key generation, the poly Rq mul in encryption,
and the first poly Rq mul in decryption. While implementing polynomial
multiplication for each parameter set, we optimized the code in various as-
pects. Some ideas work for all parameter sets, and some are only suitable
for a particular one. The core ideas are simple: manipulate registers wisely,
compute small convolutions with schoolbook, and change the domain only

1Combinatorially it is customary to write [xi]f for the coefficient of xi in f .
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(a) NTT tricks for NTRU parameter sets.

Parameter sets NTTN q′ Strategy
ntruhps4096821 1728 = 9 ⋅ 64 ⋅ 3 3365569 Mixed-radix (CT+GS)
ntruhrss701 1536 = 512 ⋅ 3 5747201 Good’s (CT+CT)
ntruhps2048677 1536 = 512 ⋅ 3 1389569 Good’s (CT+CT)
ntruhps2048509 1024 = 256 ⋅ 4 1043969 Radix-2 (CT+GS)

(b) Layers of NTTs for each set of parameter.

NTT baseMul NTT−1

ntruhps4096821
2-layer-radix-3

3 × 3
2 × 3-layer-radix-2

+2 × 3-layer-radix-2 +2-layer-radix-3
ntruhrss701

3 × 3-layer-radix-2 3 × 3 3 × 3-layer-radix-2
ntruhps2048677

ntruhps2048509 2 × 4-layer-radix-2 4 × 4 2 × 3-layer-radix-2

Table 6.2: Overview of NTTs for NTRU on Cortex-M4

when needed. We summarize the tricks used for each parameter set in Ta-
ble 6.2.

Layers of NTT. As usual, several layers of NTTs are computed at a time
to avoid load-stores and to use the registers economically. On Cortex-M4,
since only 14 general-purpose registers are available, we compute three lay-
ers of radix-2 NTTs (and two layers of radix-3 NTTs) at a time. For
ntruhps2048509, we employ a seemingly strange alternative, computing
four layers of radix-2 NTTs at a time, to set up a better foundation for
polynomial multiplication. This results in a slightly faster implementation
for ntruhps2048509 compared to the Toom-4 approach.

Tricks for commutative operations. Recall that when computing an
NTT, we must cancel out the scaling factor NTTN. We can halve the number
of Montgomery-multiplications by NTT−1N R2 mod ±q by first reducing modulo
the polynomial modulus and then performing the multiplication. The same
idea also applies to the operations of reducing the coefficient from Zq′ to Zq

and packing two coefficients into one register. Because they commute, we
pack two coefficients and then perform an and with (q − 1)∣∣(q − 1).

ntruhps4096821. Algorithm 44 depicts the NTT for ntruhps4096821. We
compute incomplete mixed-radix size-1728 NTTs for each polynomial by
splitting down to x3i,j − ζi,j , multiplying degree-2 polynomials with school-

book, deriving incomplete mixed-radix NTTs−1, and then reducing the co-
efficient ring to Zq. For incomplete size-1728 NTTs, we first compute size-9
NTTs with two radix-3 NTTs for each 9-set distanced apart by 192 units.
Next, for each consecutive 192 coefficients, we compute size-64 NTTs with
six layers of radix-2 NTTs for each 64-set distanced apart by three units,
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Algorithm 44 Incomplete mixed-radix size-1728 NTT for ntruhps4096821

Representing

⎧⎪⎪
⎨
⎪⎪⎩

src1[i] with ntt1[i/192][(imod 192)/3][(imod 3)]

src2[i] with ntt2[i/192][(imod 192)/3][(imod 3)]
.

1: For each j, k, compute

⎧⎪⎪
⎨
⎪⎪⎩

NTT9(ntt1[0-8][j][k])

NTT9(ntt2[0-8][j][k])
.

2: For each i, k, compute

⎧⎪⎪
⎨
⎪⎪⎩

NTT64∶ζi,0(ntt1[i][0-63][k])

NTT64∶ζi,0(ntt2[i][0-63][k])
.

3: For each i, j, compute nttout[i][j][0-2] =
ntt1[i][j][0-2] ⋆ ntt2[i][j][0-2]mod (x3 − ζi,j)

4: For each i, k, compute NTT−164∶ζi,0(nttout[i][0-63][k]).

5: For each j, k, compute NTT−19 (nttout[0-8][j][k]).
6: Compute des[0-1727] = final stage(nttout[0-8][0-63][0-2]).

leaving degree-2 polynomials. Among 9 sets of 192-coefficient, standard size-
64 NTTs are computed for the first 192-coefficient and twisted size-64 NTTs
are computed for the rest. The incomplete size-1728 NTT−1 is computed in
a reversed manner. For the final stage, we employ all the ideas mentioned in
the previous subheading – taking quotient before Montgomery-multiplying
(R)2NTT−1N mod q′ and pack two coefficients before the and. For merging
layers, the two layers of radix-3 NTTs are merged, the first three layers of
radix-2 NTTs are merged, the following three layers of radix-2 NTTs are
merged, and the NTTs−1 are merged in the same manner.

ntruhrss701 and ntruhps2048677. Algorithm 45 shows the NTT used
for ntruhrss701 and ntruhps2048677. We use Good’s trick for both. Our
approach is almost the same as [ACC+21b], with a slightly faster final stage.
This is because (mod 2k) and (mod (xn − 1)) are cheaper. We employ
Good’s permutation of size 3 × 29 for the size-1536 NTT. The algorithm
goes in the following order: compute three size-512 NTTs (CT butterflies),
each for 512 contiguous entries, compute 3 × 3 convolutions, where coeffi-
cients are distanced apart by 512 units, invert size-512 NTTs (CT butter-
flies), and a final stage. This last stage consists of: inverting Good’s permu-
tation, taking the remainder mod(xn − 1), Montgomery-multiplication by
(R)2NTT−1N mod q′, packing two coefficients into one register, and reducing
to coefficient ring Zq. We implement the NTTs−1 using CT butterflies be-
cause we need fewer reductions to avoid overflows. As mentioned above,
we do mod(xn − 1) first so we save half the Montgomery-multiplications by
(R)2NTT−1N mod q′.

ntruhps2048509. For ntruhps2048509, we merge our NTT layers differ-
ently to provide a better framework for polynomial multiplication. See
Algorithm 46 for the details. We perform two sets of four-layer NTTs
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Algorithm 45 Good’s trick of size-1536 NTT for ntruhrss701 and
ntruhps2048677

1: Compute {
ntt1[0-2][0-511] = (NTT⊗3512∶0−2 ○ Good3×512)(src1[0-1535])

ntt2[0-2][0-511] = (NTT⊗3512∶0−2 ○ Good3×512)(src2[0-1535])

2: For each i, compute

⎧⎪⎪
⎨
⎪⎪⎩

NTT512∶3−8(ntt1[i][0-511])

NTT512∶3−8(ntt2[i][0-511])

3: For each j, compute nttout[0-2][j] =
ntt1[0-2][j] ⋆ ntt2[0-2][j]mod (ω3 − 1)

4: For each i, compute NTT−1512(nttout[i][0-511]).
5: Compute des[0-1535] = final stage(nttout[0-2][0-511]).

Algorithm 46 Incomplete size-1024 NTT for ntruhps2048509

Representing

⎧⎪⎪
⎨
⎪⎪⎩

src1[i] with ntt1[i/4][imod 4]

src2[i] with ntt2[i/4][imod 4]

1: For each j, compute

⎧⎪⎪
⎨
⎪⎪⎩

NTT256(ntt1[0-255][j])

NTT256(ntt2[0-255][j])

2: For each i, compute nttout[i][0-3] =
ntt1[i][0-3] ⋆ ntt2[i][0-3]mod (x4 − ζi)

3: For each j, compute NTT−1256∶7−2(nttout[0-255][j]).
4: Compute des[0-1023] = final stage(nttout[0-255][0-3]).

(CT butterflies) for incomplete size-1024 NTTs, perform each 4-coefficient
(modulo a degree-3 polynomial) multiplication with schoolbook, do two
sets of 3-layer NTTs−1 (GS butterflies), and a final stage. Here GS but-
terflies make for an easier final stage comprising the following operations:
two layers of NTTs−1, taking mod(xn − 1), Montgomery-multiplication by
(R)2NTT−1N mod q′, packing two coefficients into one register, and reducing
to coefficient ring Zq. This approach saves one layer of load-stores.

6.2.3 LAC

For LAC-128, LAC-192, and LAC-256, we focus on big-by-small polynomial
multiplications where the “small” polynomials have coefficients in {0,±1}.

NTT trick for LAC. We employ the negacyclic NTT trick on the rings
Zq[x]/(x

512 + 1), Zq[x]/(x
1024 + 1), Zq[x]/(x

1024 + 1) for LAC-128, LAC-192,
and LAC-256, respectively. Our approach for LAC-128 proceeds as follows:
compute the negacyclic size-512 NTTs of polynomials, do point-by-point
multiplications, and finally, compute the size-512 NTT−1. Our approach
for LAC-192 and LAC-256 proceeds as follows: derive incomplete negacyclic
size-1024 NTT, compute 2 × 2 schoolbooks, and invert the NTT.
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(a) NTT tricks for LAC parameter sets.

Parameter sets NTTN q′ Strategy
LAC-128 512 133121 Complete NTT (CT+GS)
LAC-192

1024 270337 Incomplete NTT (CT+GS)
LAC-256

(b) Layers of NTTs for each set of parameter.

NTT baseMul NTT−1

LAC-128 3 × 3-layer-radix-2 1 × 1 3 × 3-layer-radix-2
LAC-192

3 × 3-layer-radix-2 2 × 2 3 × 3-layer-radix-2
LAC-256

Table 6.3: Overview of NTTs for LAC on Cortex-M4

6.3 Vectorized NTT on AVX2

For fast NTT-based polynomial multiplication on current x86 processors
from Intel and AMD, it is necessary to use a vectorized implementation of
the NTT. These processors support the AVX2 instruction set, offering a
large number of instructions that operate on 16 vector registers, each of
length 256 bit.

6.3.1 Fast Mulmods

The first obstacle towards fast vectorization of the NTT is the problem of
efficiently multiplying many coefficients modulo a small prime q. The stan-
dard way to compute modular products is to first compute the double-length
products over Z, and then reduce these intermediate results modulo q. In a
vectorized implementation, in order to achieve the highest possible through-
put, one wants to pack as many coefficients as possible in a vector register.
But double-length intermediate products mean it is only possible to achieve
half the density compared to packing only mod-q reduced integers. This
effectively reduces the speed of the implementation by a factor of two. Note
that this is not a problem when computing products modulo a power of two
as in other polynomial multiplication implementations for Saber or NTRU
that directly operate over the respective polynomial rings. There the arith-
metic in modern CPUs automatically takes care of the modular reduction.
To overcome this obstacle we use the modified Montgomery reduction al-
gorithm from [Sei18] together with the improvement from [LS19]. Here the
modular multiplications are computed from separate intermediate low and
high half-products. When using the AVX2 instruction set, this approach
is most efficient for 16-bit primes q. The reason is that there is a specific
high-half-only product instruction vpmulhw for packed 16-bit integers that
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Algorithm 47 Multiplication modulo 16-bit q

Require: −215 ≤ a < 215, q−1
2
≤ b ≤ q−1

2
, b′ = bq−1 mod 216

Ensure: r ≡ 216ab (mod q)
1: t1 ← ⌊

ab
216
⌋ ▷ signed high product

2: t0 ← ab′ mod 216 ▷ signed low product
3: t0 ← ⌊

t0q
216
⌋ ▷ signed high product

4: r ← (t1 − t0)mod 216

does not have an equivalent instruction for packed 32-bit integers. Therefore,
unlike on the Cortex-M4, we use NTTs modulo 16-bit primes q on AVX2.
Then we need to use a multi-modular approach and compute the polynomial
products modulo two such primes so that we are able to correctly lift the
results to Z with the help of the Chinese remainder theorem (Theorem 1).
The additional polynomial product modulo a second prime involving three
NTT computations and a base product computation does not result in re-
duced speed, because this loss of a factor of two is completely compensated
for by twice the throughput from packing 16-bit integers instead of 32-bit
integers.

We state the modular multiplication algorithm in Algorithm 47. As input
it gets a 16-bit integer a, and a mod-q reduced integer b together with the pre-
computed b′ = bq−1 mod 216. The algorithm then outputs a representative
modulo q for the scaled product ab216 mod q. The second multiplicand b
is always a fixed constant in the NTT and hence b and the corresponding
element b′ can easily be pre-computed. The scaling factor 216 is handled as
usual by pre-computing b and b′ with an additional factor of 2−16.

6.3.2 Choice of Transforms

We considered several choices of transforms. For Saber with its NTT-friendly
polynomial modulus x256 + 1, we compute the negacyclic length-256 trans-
forms modulo x256 + 1 as we do on the Cortex-M4. For performing only
a single polynomial multiplication it is usually advantageous to use an in-
complete NTT. However, for the Saber matrix-vector product the vector of
polynomials only needs to be transformed once and the inner products can
be computed in the NTT domain. Hence, a complete NTT is preferable. In
the case of ntruhps2048677 and ntruhrss701 we compute an incomplete
NTT modulo x1536 − 1 where we do 9 radix-2 splittings down to factors of
degree 3. Since the input polynomials have degrees less than 768, the first
splitting is for free. For ntruhps2048509 and ntruhps4096821 the same
approach that we use on the Cortex-M4 should also give good results on
Skylake. In particular, a length-1728 NTT with two radix-3 splittings, fol-
lowed by 6 radix-2 splittings, down to polynomials of degree less than 3. For
LAC with its polynomial moduli x512 + 1 and x1024 + 1, we compute incom-
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plete negacyclic length-512 and length-1024 NTTs, respectively, each with
eight layers, coming down to factors of degree 2 and 4.

We chose the prime moduli 7681 and 10753 for the NTTs of length 256,
512, 1024, and 1536. Their product is slightly longer than 26 bits, which is
enough for all our applications. In the case of Saber, the absolute value of the
polynomial coefficients when computing the matrix-vector product over Z is
bounded by 224, which is below 225. In NTRU, the maximum absolute value
is attained in ntruhrss701, where the coefficients are bounded by 224.04

in all products of a uniform polynomial with a short polynomial. Next, as
7680 and 10752 are divisible by 1536 = 3 ⋅ 29, both of these moduli support
complete transforms modulo x1536−1, which is all that we need for Saber and
the NTRU parameter sets except ntruhps4096821. For LAC, the coefficients
are even smaller so this is no problem.

For implementing the length-1728 NTT that we need in the remaining
NTRU parameter set ntruhps4096821, the two 16-bit primes 3457 and 8641
are used. Their product is sufficiently large, they support complete length-
1728 NTTs and they are even slightly smaller than the primes described
above, which is good for modular reductions.

So, algebraically, for Saber, we compute the map

Zq[x]/(x
256 + 1) → Zq[x]/(x − ζ0) × ⋅ ⋅ ⋅ ×Zq[x]/(x − ζ255),

where ζi denote all the primitive 512-th roots of unity in Zq.

For ntruhrss701 and ntruhps2048677, we compute

Zq[x]/(x
1536 − 1) → Zq[x]/(x

3 − ζ0) × ⋅ ⋅ ⋅ ×Zq[x]/(x
3 − ζ511),

where ζi denote all 512-th roots of unity.

For ntruhps2048509, we compute

Zq[x]/(x
1024 − 1) → Zq[x]/(x

2 − ζ0) × ⋅ ⋅ ⋅ ×Zq[x]/(x
2 − ζ511),

with ζi again ranging over all 512-th roots of unity.

Then, for ntruhps4096821, we compute

Zq[x]/(x
1728 − 1) → Zq[x]/(x

3 − ζ0) × ⋅ ⋅ ⋅ ×Zq[x]/(x
3 − ζ575),

where ζi denote all 576-th roots of unity. Finally, for LAC, we do

Zq[x]/(x
512 + 1) → Zq[x]/(x

2 − ζ0) × ⋅ ⋅ ⋅ ×Zq[x]/(x
2 − ζ255), and

Zq[x]/(x
1024 + 1) → Zq[x]/(x

4 − ζ0) × ⋅ ⋅ ⋅ ×Zq[x]/(x
2 − ζ255),

where ζi denote all the primitive 512-th roots of unity.
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6.3.3 Register Allocation

Intel’s Skylake and later microarchitectures have a throughput of 2 vector
multiplications per clock cycle with a latency of 5 cycles [Fog20]. The ad-
dition and subtraction instructions have a throughput of 3 instructions per
cycle since they can go to a third execution port that is not able to execute
multiplications. Their latency is 1 cycle. Hence, the subtraction instruction
in Algorithm 47 ideally does not compete with the multiplication instruc-
tions for execution resources, and the maximum theoretical throughput is
2/3 vector mulmod operations per cycle, or 32/3 scalar modular multiplica-
tions per cycle. However, the critical path of a vector mulmod consists of
two multiplication instructions and a subtraction and thus has a latency of
11 cycles. In order for the code to not be completely latency-bounded and
get near the maximum throughput, it is important that there are always
many independent mulmods that can be computed in parallel. In principle,
the out-of-order execution capability allows the CPU to find independent
mulmods. But in practice, the code will not come from the small µop cache
and the instruction fetch from the L1 instruction cache is limited to 16 bytes
per cycle, which translates to only less than about three vector instructions
per cycle on average. So the code is likely to bottleneck on the front-end
of the pipeline and the instruction decoding will not be able to run suffi-
ciently far ahead for the CPU to be able to find independent instructions
if they are far apart in the code. Hence it is important to schedule the
instructions so that as many independent mulmods as possible are as close
as possible. We achieve this by filling as many vector registers as possible
with polynomial coefficients to operate on under the constraint that we also
need auxiliary registers for constants and scratch registers for intermediate
results. Then we can compute several NTT layers while loading coefficients
only once, and, after only a few layers, arrive at polynomials that we can
completely load into the registers. We also experimented with more refined
approaches to scheduling where we implemented several parallel mulmods in
an interleaved fashion so that we could schedule the addition and subtrac-
tion instructions in a way that they do not steal execution resources from
the multiplication instructions. The downside of this approach is that by
interleaving mulmod operations one needs more scratch registers so that one
can either only operate on fewer polynomial coefficients at a time or needs
to temporarily store away some of the coefficients. In the end, we found that
not doing this and letting the register-renaming capability of the CPU take
care of allocating scratch registers from the register file leads to superior
results. In the power-of-two NTTs we always have 8 vector registers with
a total of 128 polynomial coefficients loaded whereas in the NTT for NTRU
(whose length 1536 is divisible by 3) we have always 12 registers with 192
coefficients loaded.

130



6.3.4 Range Analysis

For the two primes q = 7681 and q = 10753 that we use, it is not possible
to compute all the layers of the NTT using straightforward radix-2 steps
without performing additional modular reductions. We assume that the
input polynomials we want to transform have coefficients less than 4096 in
absolute value. This is true for all our applications without first reducing the
polynomials modulo q. Now, by [Sei18, Lemma 2], the output coefficients
of Algorithm 47 lie in the interval [−q, q]. So, using this approximation, we
find for the forward negacyclic NTT with Cooley-Tukey butterflies that the
coefficients grow by at most q in absolute value in each layer of the NTT. It
then follows that we can only perform 2 layers without additional reductions.
Instead, we use a more refined range analysis where for each layer and a
given input range we compute the maximum range of the modular products.
This then determines the range of the output coefficients, which form the
inputs for the next layer. With this analysis, we find that we can compute
three layers of radix-2 splittings without additional reductions, both in the
cyclic and in the negacyclic NTT. After these three layers, we twist all the
factors into rings of the form Zq[x]/(x

n − 1). The advantage of twisting the
factors instead of merely reducing coefficients is that this results in fewer
modular multiplications in subsequent layers. Moreover, the mulmods as
in Algorithm 47 are even slightly more efficient than, for example, Barrett
reductions as they have the same throughput but shorter dependency chains.
Concretely, splitting rings of the form Zq[x]/(x

n − 1) does not need any
mulmod. But for later factors of this form, we do in fact sometimes multiply
coefficients by 1 (in the Montgomery domain) in order to reduce them using
the Montgomery reduction. We then recursively compute the following maps
with 16n mulmods, where ζ ∈ Zq is a primitive 8-th root of unity,

Zq[x]/(x
8n − 1)

→ Zq[x]/(x
4n − 1) ×Zq[x]/(x

4n + 1)

→ Zq[x]/(x
2n − 1) ×Zq[x]/(x

2n + 1) ×Zq[x]/(x
2n − ζ2)

×Zq[x]/(x
n + ζ2)

→ Zq[x]/(x
n − 1) ×Zq[x]/(x

n + 1) ×Zq[x]/(x
n − ζ2)

×Zq[x]/(x
n + ζ2) ×Zq[x]/(x

n − ζ) ×Zq[x]/(x
n + ζ)

×Zq[x]/(x
n − ζ3) ×Zq[x]/(x

n + ζ3)

→ Zq[x]/(x
n − 1) × ⋅ ⋅ ⋅ ×Zq[x]/(x

n − 1)

6.4 Results

In this section, we describe the benchmarking results for our Saber, NTRU,
and LAC implementations. First, we describe our benchmarking setup for
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the Cortex-M4 and Skylake and then we report our results for Saber, NTRU,
and LAC in Sections 6.4.1, 6.4.2, and 6.4.3.

Benchmarking setup for the Cortex-M4. Our benchmarking setup
is based on the pqm4 [KPR+] benchmarking framework. We target the
STM32F407-DISCOVERY board which has a STM32F407VG core. We clock it
at 24 MHz with no flash wait states to obtain similar cycle counts as the
ones reported in pqm4. For obtaining randomness, we use the hardware ran-
dom number generator. As both NTRU and Saber make use of SHA-3 and
SHAKE, we make use of the optimized assembly implementations of Keccak
from the XKCP [DHP+] which is also contained in pqm4. LAC relies on
AES and SHA-2 which we source from [SS17] and SUPERCOP [BL] respec-
tively. All cycle counts in the following were obtained from implementations
compiled with gcc and -O3 (arm-none-eabi-gcc, Version 10.2.0).

Benchmarking setup for Skylake. The cycle counts for AVX2 were ob-
tained on a Intel Core i7-6600U (Skylake) processor with a base frequency of
2.6 GHz. As usual, we disable TurboBoost and hyperthreading. We compile
our implementations with gcc version 7.5.0 and use the compiler flags -O3,
-fomit-frame-pointer, -march=native, -mtune=native. All cycle counts
are the median cycle counts of 10 000 executions.

6.4.1 Saber Results

Table 6.4 contains the performance results for the polynomial arithmetic
speed-ups in Saber. We report the results for matrix-vector multiplication
A ⋅ s as used in key generation and encryption and vector-vector inner mul-
tiplication bT ⋅ s as used in encryption and decryption separately. The di-
mension of the matrix is l × l and the dimensions of the vectors are l × 1.
The dimension l = 2,3,4 correspond to parameter sets Lightsaber, Saber, and
Firesaber.

On Cortex-M4, we obtain cost reduction between 58% and 61% for A ⋅ s
and between 42% and 44% for bT ⋅ s. The cost reduction on Skylake range
from 25% to 39% for A ⋅ s and from 47% to 60% for bT ⋅ s.

132



Table 6.4: Saber performance results in clock cycles for core arithmetic op-
erations on Cortex-M4 and Skylake. The inner-product computation in our
AVX2 implementation for Saber does not contain the cost of computing the
NTT of one of the input vectors. In encryption the NTT of the secret vec-
tor is already computed for the matrix-vector product. For decryption the
secret vector can be stored in NTT form in the secret key, which does not
need to be compatible with other implementations.

MatrixVectorMul

Cortex-M4 Skylake (AVX2)
[BMKV20] Our Work [BMKV20] Our Work

l = 2 159k 66k (− 58%) 7002 5215 (−25%)
l = 3 317k 125k (− 61%) 14145 9579 (−32%)
l = 4 528k 205k (− 61%) 24342 14959 (−39%)

InnerProducta

Cortex-M4 Skylake (AVX2)
[BMKV20] Our Work [BMKV20] Our Work

l = 2 73k 41k (− 44%) 4016 2125 (−47%)
l = 3 99k 57k (− 42%) 5977 2706 (−55%)
l = 4 126k 73k (− 42%) 8040 3278 (−60%)

a [BMKV20] report cycles on a different platform with a slightly newer Kabylake processor.
We have re-benchmarked their code on our Skylake platform.
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Table 6.6: NTRU performance results in clock cycles for polynomial multi-
plication on Cortex-M4 and Skylake

Cortex-M4 Skylake (AVX2)
n [KRS19]a Our Work [ZCH+19] Our Work
509 104k 101k (− 3%) 6643 8540 (+29%)
677 175k 156k (− 11%) 11103 10373 (−7%)
701 173k 156k (− 10%) 11242 10373 (−8%)
821 230k 199k (− 13%) 15507 13247 (−15%)

a [KRS19] (Chapter 5) only reports cycle counts for n = 701, but the code generator has
been used to generate Toom–Cook polynomial multiplication code to speed-up the other
NTRU parameter sets. See https://github.com/mupq/pqm4/pull/86

Table 6.5 shows the performance of Lightsaber, Saber, and Firesaber
on the Cortex-M4 when our fast MatrixVectorMul and InnerProduct are
plugged into them. In addition to the full CCA-secure KEM schemes, we
also report cycle counts for the underlying CPA-Secure PKE. While those
are not explicitly exposed in the Saber specification, all our optimizations
were inside of the CPA primitives and, hence, the overhead of the CCA
transformation did not change. Moreover, some schemes use considerably
more expensive CCA transforms than others. For example, Saber and Kyber
include very costly public key and ciphertext hashes in their CCA transforms
that could be omitted in a different choice of transform.

On Cortex-M4, we achieve significant cost reductions of consistently more
than 20%. For CPA-secure decryption, we get the most notable cost reduc-
tion of 38%.

6.4.2 NTRU Results

Table 6.6 shows the results for polynomial multiplication for NTRU for the
four different polynomial degrees used in ntruhps2048509, ntruhps2048677,
ntruhrss701, and ntruhps4096821. On the Cortex-M4, for the smallest
polynomial size n = 509, our implementation using NTTs is performing only
slightly better than the Toom-4 implementation [KRS19]. For the larger
sizes, the cost reduction on the Cortex-M4 is more pronounced with 10%
or more. On AVX2, n = 509 is the only polynomial size for which we were
not able to obtain a speed-up using NTTs. All other parameter sets have
a small cost reduction of 7% to 15%. The reason why we did not achieve
a speed-up for n = 509 is partly that we chose a different vector layout and
shuffling strategy in the length-1024 NTT compared to the other NTTs. The
advantage of the different vector layout is that it is easier to pre-compute
the constant vectors that, additionally, need less space. But it requires more
loads. In principle, the loads do not compete with the arithmetic because
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they go to separate execution ports and can be dispatched in parallel. Un-
fortunately, it turned out that this does incur a penalty, most likely because
the code is bottlenecking on the front-end. We leave it as future work to
optimize the length-1024 NTTs as well as the other NTTs.

Table 6.7 and Table 6.8 report the results for the full NTRU schemes
on Cortex-M4 and Skylake respectively. As we only optimize polynomial
multiplication in this chapter and key generation is dominated by polynomial
inversion, we do not see a big difference in cycle counts across all parameter
sets and platforms. On the Cortex-M4, encapsulation is 1% to 6% faster
while decapsulation is 2% to 4% faster. For the underlying CPA-secure
PKE, we achieve higher speed-ups with 2% to 13% fewer cycles which comes
as no surprise as we did not modify the CCA transformation.

6.4.3 LAC Results

Table 6.9 summarizes the speed of the polynomial multiplication in LAC.
We can see that our code is faster than that of [LLZ+18] by a factor of 10×
on the Cortex-M4 and a factor of 3× to 7× on Skylake.

Table 6.10 summarizes the results for the full LAC schemes. For LAC-128
we see a 3× up speedup on the Cortex-M4 while there is a more modest
20–50% speedup for AVX2. For LAC-192 and LAC-256 there is a roughly 4×
speedup for the Cortex-M4 and roughly a 2× speedup for Skylake.
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Table 6.7: Performance results in clock cycles for NTRU on Cortex-M4

Cortex-M4
[KRS19]a Our Work

ntruhps2048509

CPA
K 79 639k 79 617k (±0%)
E 160k 152k (−5%)
D 441k 434k (−2%)

CCA
K 79 682k 79 660k (±0%)
E 572k 564k (−1%)
D 545k 538k (−1%)

ntruhps2048677

CPA
K 143 759k 143 671k (±0%)
E 251k 224k(−11%)
D 702k 676k (−4%)

CCA
K 143 808k 143 725k (±0%)
E 849k 821k (−3%)
D 845k 818k (−3%)

ntruhrss701

CPA
K 153 794k 154 377k (±0%)
E 299k 274k (−8%)
D 740k 716k (−3%)

CCA
K 154 477k 154 403k (±0%)
E 403k 377k (−6%)
D 896k 871k (−3%)

ntruhps4096821

CPA
K 208 892k 208 771k (±0%)
E 327k 285k(−13%)
D 906k 862k (−5%)

CCA
K 208 953k 207 495k (−1%)
E 1 069k 1 027k (−4%)
D 1 075k 1 030k (−4%)

a[KRS19] (Chapter 5) only reports cycle counts for the CCA-secure ntruhrss701 from the
first round of the NIST competition. Cycle counts in this table are our own benchmarks
of the second-round code contained in pqm4 [KPR+].

137



Table 6.8: Performance results in clock cycles for NTRU on Skylake (AVX2)

Skylake (AVX2)
[ZCH+19] Our Work

ntruhps2048509

CPA
K 155306 164952 (+6%)
E 10183 12052(+18%)
D 27314 31340(+15%)

CCA
K 208653 218887 (+5%)
E 71018 73176 (+3%)
D 38950 42953(+10%)

ntruhps2048677

CPA
K 264398 264276 (±0%)
E 15794 15821 (±0%)
D 43352 42515 (−2%)

CCA
K 332906 333278 (±0%)
E 96293 95953 (±0%)
D 59169 58406 (−1%)

ntruhrss701

CPA
K 265341 264501 (±0%)
E 19096 18507 (−3%)
D 45130 43770 (−3%)

CCA
K 299066 298505 (±0%)
E 56616 56084 (−1%)
D 62503 61199 (−2%)

ntruhps4096821

CPA
K 375171 367911 (−2%)
E 18914 16917(−11%)
D 55573 52204 (−6%)

CCA
K 458614 451664 (−2%)
E 114986 113935 (−1%)
D 74182 70917 (−4%)

a[KRS19] (Chapter 5) only reports cycle counts for the CCA-secure ntruhrss701 from the
first round of the NIST competition. Cycle counts in this table are our own benchmarks
of the second-round code contained in pqm4 [KPR+].

Table 6.9: LAC polynomial multiplication clock cycles on Cortex-M4 and
Skylake

Cortex-M4 Skylake (AVX2)
[LLZ+18] Our Work [LLZ+18] Our Work

LAC-128 638k 65k (−90%) 14691 4552 (−69%)
LAC-192 1 274k 131k (−90%) 73955 10119 (−86%)
LAC-256 1 701k 132k (−92%) 73955 10119 (−86%)
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Chapter 7

Recent Developments and
Outlook

This chapter describes some recent developments and future directions re-
lated to the research presented in this thesis. With the NISTPQC com-
petition nearing the end of the third round, NIST will likely publish PQC
standards in the next few years. Beyond the NISTPQC competition, state-
ful hash-based signatures have recently been standardized as informational
RFCs [HBG+18, MCF19]. This means that PQC will soon be deployed to
many applications. As of now, lattice-based cryptography appears to be
the most promising family of post-quantum cryptography as it has reason-
able sizes and achieves very good performance. This thesis contributed to a
better understanding of how state-of-the-art lattice-based cryptography can
be best implemented on microcontrollers. For the schemes covered in this
thesis, it appears that NTTs result in the fastest implementations even if
schemes are not designed with NTTs in mind. Run-time of lattice-based
cryptography appears to present a very minor challenge, even on microcon-
trollers, while RAM consumption can be a larger obstacle. Even though
considerable progress in the area of efficient and secure PQC implementa-
tion has been made in recent years, still many problems remain unsolved
and more research is needed. In the following, I outline what I consider the
most relevant problems for PQC implementations pointing out recent work
addressing them and challenges that remain unsolved.

More primitives on Cortex-M4. While in this thesis the focus was on
lattice-based constructions, other schemes are also promising for some uses
cases and have received significantly less attention from the implementation
community. In our recent work [CKY21], we study how Rainbow [DCK+19]
can be implemented on the Cortex-M4. Due to the large public key of 158 kB,
the development board used in this thesis (STM32F4DISCOVERY) cannot
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even accommodate the public key. Hence, we use the larger Silicon Labs’
Giant Gecko (EFM32GG11B) board which has 512 kB of RAM. The coverage
of other schemes also improved over the last years. For example, there
is recent work describing Cortex-M4 implementations of BIKE [CCK21],
Classic McEliece [CC21], and SIKE [SAJA20, AAK21]. As some of these
implementations are the first ones to target the Cortex-M4, there may be
more progress to be made.

Smaller processors. Even though NIST has designated the Cortex-M4 as
the main microcontroller optimization target, PQC will need to be deployed
to smaller devices as well. Hence, we need to understand how different PQC
schemes perform. Chapter 4 provided one step in that direction by also
studying implementations on the Cortex-M3. The most significant observa-
tion is that the Cortex-M4 has much more powerful multiplication instruc-
tions than its predecessors. This benefits schemes that inherently rely on
multiplications rather than other operations. Beyond the Cortex-M3, one
may want to look into the Arm Cortex-M0, RISC-V, or AVR microcon-
trollers. Those are likely even more restricted in terms of RAM and flash
which may present a challenge for PQC implementations.

Larger processors. Another direction to go forward would be to investigate
larger processors, for example, those providing more powerful vector instruc-
tions. One interesting direction is to study the successors of the Cortex-M4
in the Arm M-Series implementing the M-Profile Vector Extension (MVE),
for example, the Arm Cortex-M55. Implementations of Saber using MVE
have recently been studied in [BMK+21]. Apart from the M-Series, the Arm
A-Series presents another attractive target architecture as it is commonly
used, e.g., in smartphones. It implements the Neon vector instruction set.
Our recent paper [BHK+21] studies how Kyber, Saber, and Dilithium can be
efficiently implemented using Neon on the Arm Cortex-A72 implementing
Armv8-A. As future Arm A cores (≥Armv8.4-A) provide SHA-3 hardware sup-
port, they will be very suitable for post-quantum cryptography. Another fea-
ture introduced in Armv8.4-A are instructions supporting data-independent
timing (DIT).1 The programmer can turn on DIT at run time by setting a
flag. When DIT is turned off, instructions may have data-dependent runtime
on some cores implementing Armv8.4-A. If DIT is turned on, all instructions
within the architecturally defined scope of DIT are guaranteed to have an
execution time that’s independent of their input data. This may introduce
a performance penalty as short-cuts in the circuit can not longer be taken.
This allows implementing cryptographic code safely while not unnecessarily
slowing down application code processing uncritical data. As of Armv8.4-A
not all instructions are currently covered by DIT, however, this still presents
a new way to thwart timing attacks on a microarchitectural level.

1https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-
Registers/DIT–Data-Independent-Timing
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Non-interactive key exchange (NIKE). All constructions underlying
the KEMs in the NISTPQC competition have a significant drawback: They
do not allow to construct a NIKE. However, NIKEs are often used in to-
days protocols as they are easily constructed from the (EC-)DLP. Replac-
ing those with one of the NISTPQC standards is not going to be possible
without significantly changing the protocols. The first post-quantum NIKE
is CSIDH [CLM+18] which was proposed in 2018, i.e., after the NISTPQC
competition had already started. It is based on supersingular isogeny graphs.
While CSIDH has very small public key and ciphertext sizes, it is, unfor-
tunately, prohibitively slow especially on embedded devices. Studying how
the performance of CSIDH can be improved, or proposing completely new
efficient NIKEs is a promising area of future research.

Side-channel attacks. Timing attacks and power analysis attacks both
proved to be very effective in attacking implementations of cryptography.
As timing attacks are mountable remotely, they are relevant for virtually
all deployments. Hence, the vast majority of cryptographic implementations
including the ones described in this thesis aim to be resistant against tim-
ing attacks. In theory, timing-attack countermeasures are well understood,
however, in practice, they may be implemented insecurely as, for example,
shown in [GJN20] for the NISTPQC scheme FrodoKEM. Power analysis at-
tacks are limited to a scenario where an adversary may be able to observe
power leakage. However, if that is the case, they are much harder to protect
against than timing attacks. The most common countermeasure against (dif-
ferential) power analysis attacks is masking which has been recently studied
for some NISTPQC schemes [MGTF19, BGR+21, FBR+21, ABE+21]. How-
ever, recent work on single-trace attacks of PQC [HHP+21, PP19, PPM17]
suggests that masking may not be enough. Our work on single-trace at-
tacks on Keccak [KPP21] also applies although it did not exclusively cover
post-quantum schemes.

Fault attacks. In case the attacker is able to actively tamper with the
device to induce faults in the cryptographic computation, fault attacks may
be possible. There already exist a number of studies about the fault attack
susceptibility of NISTPQC schemes [PP21, GBP18, AOTZ20, TFMP21].
One of our papers [GKPM18] studied practical fault attacks on SPHINCS
(the predecessor of the NISTPQC submission SPHINCS+) and has shown
that a single fault in the large hyper-tree computation allows the adversary
to create forgeries. In another paper [CKM+20], we studied how to protect
the isogeny-based scheme CSIDH [CLM+18] against fault attacks. More
work is required to better understand protection of PQC from fault attacks.

Formal verification of implementations. Implementation mistakes can
have devastating consequences for the security of cryptographic schemes.
Hence, it is essential to ensure that cryptographic implementations are cor-
rect, i.e., implemented according to the specification. Testing and checking
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that implementations produce the same test vectors as the reference imple-
mentations, in the way pqm4 does, is able to catch many bugs. However, it
cannot provide us any correctness guarantees. Therefore, it is still possible
that bugs remain that only occur very rarely or on specially crafted inputs.
Random testing is unsuitable to find such mistakes. Formal methods can
provide much stronger guarantees about the correctness of implementations.
While this is an active area of research, thus far, I am not aware of any
published verified implementations of any NISTPQC scheme.

Protocols. The entire NISTPQC competition focuses on selecting primitives
for key establishment and signatures. However, these primitives will then be
embedded into many different types of protocols. It is essential to understand
what the implications of switching to post-quantum schemes will be for the
protocols. While for some protocols, it may be possible to simply drop in
a post-quantum replacement, others may have to be modified or even re-
designed entirely. Various research papers have studied the arguably most
important protocol on the internet: TLS [BCNS15, PST20, SKD20]. While
current proposals require signatures, this will come at a rather large cost
in the post-quantum world. It may be preferable to modify TLS to rely
on KEMs only, as, e.g., done in KEMTLS [SSW20, SSW21]. As TLS is
commonly used on a wide variety of devices, it will be crucial to understand
the impact of changing to post-quantum TLS.

Migration. Arguably the biggest challenge of PQC is going to be migration.
As there are billions of devices running cryptography vulnerable to quantum
attacks, every single one of them will need to be updated or replaced. As
many of them have not been designed with cryptographic agility — the
ability to replace outdated cryptography – in mind, this will be especially
challenging. From an implementation viewpoint, the first major challenge
will be to extend existing cryptographic libraries for support of the new
post-quantum primitive in a vast number of programming languages.

NISTPQC signature on-ramp. Recently, NIST announced2 that due to
recent attacks on GeMSS [TPD21] and Rainbow [Beu21], they are concerned
about the security of the current MQ proposals. Consequently, the only
signature schemes left are SPHINCS+ and the lattice-based signatures Falcon
and Dilithium. As NIST would like to see more diversity, they will publish
a call for more signature proposals soon. It is expected that such a call
will be published at the end of round three with a deadline in 2022. Since
none of the recent attacks fundamentally breaks MQ-based cryptography, it
is expected that more MQ proposals will be submitted. Additionally, some
newer isogeny-based proposals may be promising, e.g., SQISign [FKL+20].
It will be essential to understand the performance characteristics of these
new proposals on a wide variety of platforms.

2https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-

round/images-media/session-1-moody-nist-round-3-update.pdf
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Acronyms

The following lists common acronyms in alphabetical order that are com-
monly used throughout this thesis. Scheme or algorithm names (like AES
or CT) are not included.

ABI Application binary interface

AES Advanced encryption standard

API Application programming interface

CACR Chinese Association of Cryptologic Research

CCA Chosen-ciphertext attack

CPA Chosen-plaintext attack

CPU Central processing unit

CRT Chinese remainder theorem

DFT Discrete Fourier transform

DIF Decimation in frequency

DIT Decimation in time

DLP Discrete-logarithm problem

DPKE Deterministic public-key encryption

DSP Digital signal processing

ECC Elliptic-curve cryptography

FFT Fast Fourier transform

FPU Floating point unit

ISA Instruction set architecture
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KEM Key-encapsulation mechanism

LWE Learning with errors

LWR Learning with rounding

MAC Message authentication code

MLWE Module-LWE

MVE M-Profile vector extension

NIST National Institute for Standards and Technology

NTT Number-theoretic transform

PKC Public-key cryptography

PKE Public-key encryption

PQC Post-quantum cryptography

RAM Random-access memory

RLWE Ring-LWE

RNG Random-number generator

ROM Read-only memory

SHA Secure hash algorithm

SIMD Single instruction, multiple data

SRAM Static random-access memory

XOF Extensible-output function
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Appendix A

Research Data
Management

This thesis research has been carried out under the research data manage-
ment policy of the Institute for Computing and Information Science of Rad-
boud University, The Netherlands.1

The research datasets produced during this PhD research packaged into a
single archive are available at https://doi.org/10.5281/zenodo.5555735.
The following research datasets, exclusively consisting of source code, have
been produced during this PhD research and are also available individually
on Github:

• Chapter 2: Polynomial Multiplication for Computer Scientists.
https://github.com/mkannwischer/polymul

• Chapter 3: Memory-Efficient High-Speed Implementation of Kyber on
Cortex-M4.
https://github.com/mupq/nttm4

• Chapter 4: Compact Dilithium Implementations on Cortex-M3 and
Cortex-M4.
https://github.com/dilithium-cortexm/dilithium-cortexm

• Chapter 5: Toom–Cook and Karatsuba Multiplication for Z2m[x].
https://github.com/mupq/polymul-z2mx-m4

• Chapter 6: NTT Multiplication for NTT-unfriendly Rings.
https://github.com/ntt-polymul/ntt-polymul

1ru.nl/icis/research-data-management/, last accessed October 08th, 2021.
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Summary

With the advance of quantum computers, there is an urgent need to find
replacements for public-key cryptography threatened by Shor’s quantum al-
gorithm. This thesis presents work towards understanding post-quantum
replacements for key-encapsulation mechanisms and digital signatures from
an implementation perspective. The focus of this thesis lies on polyno-
mial multiplication which is at the core of most post-quantum cryptography
based on hard lattice problems. Chapters 1 and 2 present the background
and common concepts among the remainder of the thesis. The main body is
then divided into two parts: Part I (Chapter 3 and Chapter 4) covers crypto-
graphic schemes specifically designed to benefit from a particular polynomial
multiplication technique: Number-theoretic transforms. Part II (Chapter 5
and Chapter 6) covers the other lattice-based schemes that were designed
without tailoring parameter choices to a specific multiplication algorithm.

Chapter 3. This chapter studies microcontroller (Arm Cortex-M4) imple-
mentations of the post-quantum key-encapsulation mechanism Kyber.
It speeds up the polynomial multiplication within Kyber by improv-
ing upon previous implementations of the number-theoretic transform.
This is achieved by making use of the single-instruction-multiple-data
arithmetic available on the Arm Cortex-M4. The resulting implemen-
tation of the NTT is more than twice as fast as the previous speed
record. Furthermore, it studies how to minimize the memory usage
of Kyber implementations. Kyber is much more favorable for memory-
efficient implementations than other candidates.

Chapter 4. The next chapter presents Arm Cortex-M3 and Arm Cortex-
M4 implementations of the post-quantum digital signature scheme
Dilithium. The focus again lies on the number-theoretic transform and
reducing the memory consumption of the implementation. A substan-
tial challenge on the Arm Cortex-M3 is the data-dependent timing of
certain multiplication instructions often used within the polynomial
arithmetic of Dilithium. As this data dependence leaks information
about sensitive data within the computation, one has to find an alter-
native way of implementing polynomial multiplication while avoiding
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variable-time instructions. We propose one such way that exclusive
uses constant-time multiplications. The core contributions are new
speed records for Dilithium on Arm Cortex-M3 and Arm Cortex-M4
as well as a study of different ways of implementing Dilithium with
varying memory constraints.

Chapter 5. In this chapter, Arm Cortex-M4 implementations of five post-
quantum key-encapsulation mechanisms are studied: RLizard, NTRU-
HRSS, NTRU-KEM-743, Saber, Kindi. The chapter focuses on multi-
plication using algorithms by Toom–Cook and Karatsuba. The core
contribution is a code generator capable of generating polynomial-
multiplication code for a wide variety of parameters. By plugging the
multiplication routines into various post-quantum schemes we achieve
performance superior to the previous state of the art. For most of the
studied schemes, the only previous implementation that executes on
the Arm Cortex-M4 is the reference implementation; for some of those
schemes, our optimized software is more than a factor of 20 faster. One
of the schemes, namely Saber, has been optimized on the Cortex-M4
in previous work; the multiplication routine for Saber we present here
outperforms the multiplication from that work by almost 2×. Out of
the five schemes optimized in this chapter, the best performance for
encapsulation and decapsulation is achieved by NTRU-HRSS. Specifi-
cally, encapsulation takes just over 400 000 cycles, which is more than
twice as fast as for any other NIST candidate that has previously been
optimized on the Arm Cortex-M4.

Chapter 6. The last chapter of the main body of this thesis further im-
proves upon Chapter 5 by studying the use of the number-theoretic
transform in NTRU, LAC, and Saber. It shows that implementations
using the number-theoretic transform are superior to Toom–Cook and
Karatsuba on the Arm Cortex-M4 and Intel Skylake. Interestingly,
these two platforms mandate different approaches: On the Cortex-M4,
we use 32-bit arithmetic, while on Intel we use two 16-bit NTT-based
polynomial multiplications and combine the products using the Chi-
nese Remainder Theorem (CRT). For Saber, the performance gain
is particularly pronounced. On Cortex-M4, the Saber NTT-based
matrix-vector multiplication is 2.5× faster than previous implementa-
tions using Toom–Cook multiplication. For NTRU, the speedup is less
impressive but still performs better than Toom–Cook for all parameter
sets on Cortex-M4.
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Samenvatting

Door de opmars van de quantumcomputers is er een dringende behoefte om
vervanging te vinden voor publieke-sleutelcryptografie die wordt bedreigd
door het algoritme van Shor. Dit proefschrift levert een bijdrage aan het
begrip van post-quantum-alternatieven voor sleutel-inkapselmechanismen en
digitale handtekeningen, vanuit een implementatie-perspectief. De focus van
dit proefschrift ligt op polynoomvermenigvuldigingen, wat de kern is van de
meeste op roosters gebaseerde post-quantumcryptografie. Hoofdstuk 1 en 2
gaan in op de achtergrond, en op algemene concepten voor de rest van het
proefschrift. De kern is vervolgens opgedeeld in twee delen: deel I (hoofdstuk
3 en hoofdstuk 4) beslaat cryptografische systemen die zijn ontworpen om te
profiteren van een specifieke techniek voor polynoomvermenigvuldiging: de
getaltheoretische transformatie (NTT). Deel II (hoofdstuk 5 en hoofdstuk 6)
gaat in op de andere op roosters gebaseerde systemen, waarbij in het ontwerp
geen rekening is gehouden met een specifiek vermenigvuldigingsalgoritme.

Hoofdstuk 3. Dit hoofdstuk bekijkt implementaties van het post-quantum
sleutel-inkapselingsmechanisme Kyber voor microcontrollers (specifiek:
Arm Cortex-M4). We versnellen de polynoomvermenigvuldiging in
Kyber door een eerdere implementatie van de NTT te verbeteren. Dit
wordt bereikt door gebruik te maken van de enkelvoudige-instructie-
meervoudige-data-berekeningen (SIMD) die beschikbaar zijn op de Arm
Cortex-M4. De daaruit volgende implementatie van de NTT is meer
dan twee keer zo snel als het voormalige snelheidsrecord. Ook bestudeert
dit hoofdstuk hoe het geheugengebruik van implementaties van Kyber
kan worden geminimaliseerd. Wat betreft geheugen-efficiënte imple-
mentaties is Kyber veel kansrijker dan andere kandidaten.

Hoofdstuk 4. Het volgende hoofdstuk presenteert implementaties van het
post-quantum-handtekeningensysteem Dilithium voor de Arm Cortex-
M3 en de M4. De focus ligt weer op de getaltheoretische transformatie
en op het reduceren van het geheugengebruik van de implementatie.
Op de Arm Cortex-M3 vormt de van data afhankelijke tijdsduur van
bepaalde vermenigvuldigingsoperaties een wezenlijke uitdaging. Deze
komen veelvuldig voor in de berekeningen van Dilithium. Omdat deze
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afhankelijkheid van data informatie lekt over geheime waarden die wor-
den gebruikt in de berekening, moet er een andere manier worden
gevonden om de polynoomvermenigvuldigingen te implementeren zon-
der gebruik te maken van instructies met een variabele tijdsduur. We
dragen een methode aan die uitsluitend vermenigvuldigingen met een
constante tijdsduur gebruikt. De voornaamste resultaten zijn nieuwe
snelheidsrecords voor Dilithium op Arm Cortex-M3 en Arm Cortex-
M4, en een uiteenzetting van de verschillende manieren om Dilithium
te implementeren met variërende beperkingen op het geheugengebruik.

Hoofdstuk 5. In dit hoofdstuk behandelen we implementaties van een vi-
jftal post-quantum sleutel-inkapselingsmechanismen: RLizard, NTRU-
HRSS, NTRU-KEM-743, Saber en Kindi. Dit hoofdstuk focust op ver-
menigvuldigingen door middel van algoritmen van Toom–Cook en Karat-
suba. De voornaamste bijdrage is een codegenerator waarmee code
kan worden gegenereerd voor vermenigvuldigingen voor een brede se-
lectie aan parameters. Door deze vermenigvuldigingsroutines in di-
verse post-quantumsystemen te gebruiken behalen we betere prestaties
dan de voormalige state-of-the-art. Voor de meeste van deze systemen
is de referentie-implementatie de enige die uitvoerbaar is op de Arm
Cortex-M4; voor een aantal van deze systemen is onze implementatie
meer dan een factor twintig sneller. Een van de systemen, Saber, is al
eerder geoptimaliseerd op de Cortex-M4; de vermenigvuldigingsroutine
die we hier presenteren overtreft de vermenigvuldiging uit het eerdere
werk met bijna een factor twee. Van de vijf systemen die we hier opti-
maliseren worden de beste prestaties voor inkapseling en ontkapseling
behaald door NTRU-HRSS. Inkapseling kost net meer dan 400 000 klok-
tikken, en is daarmee meer dan twee keer zo snel als elk van de andere
NIST-kandidaten die zijn geoptimaliseerd op de Arm Cortex-M4.

Hoofdstuk 6. Het laatste hoofdstuk van de kern van dit proefschrift ver-
betert de resultaten van hoofdstuk 5 door het gebruik van de getalthe-
oretische transformatie in NTRU, LAC en Saber te onderzoeken. We
tonen aan dat implementaties die gebruik maken van de getaltheo-
retische transformatie beter zijn dan Toom–Cook en Karatsuba op
de Arm Cortex-M4 en Intel Skylake. Interessant genoeg vergen deze
beide platformen een verschillende aanpak: op de Cortex-M4 maken
we gebruik van 32-bit-berekeningen, terwijl we op de Intel gebruik
maken van twee 16-bit NTT-gebaseerde polynoomvermenigvuldigingen
en de producten combineren middels de Chinese reststelling. Vooral
bij Saber is de snelheidswinst opvallend. Op de Cortex-M4 is de NTT-
gebaseerde matrix-vector-vermenigvuldiging 2.5× sneller dan imple-
mentaties die gebruik maken van Toom–Cook-vermenigvuldiging. Bij
NTRU is de winst minder indrukwekkend, maar ook hier presteert de
NTT-gebaseerde Cortex-M4-implementatie beter voor alle varianten.
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