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Abstract. Two multivariate digital signature schemes, Rainbow and GeMSS, made
it into the third round of the NIST PQC competition. However, neither made its
way to being a standard due to devastating attacks (in one case by Beullens, the
other by Tao, Petzoldt, and Ding). How should multivariate cryptography recover
from this blow? We propose that, rather than trying to fix Rainbow and HFEv- by
introducing countermeasures, the better approach is to return to the classical Oil
and Vinegar scheme. We show that, if parametrized appropriately, Oil and Vinegar
still provides competitive performance compared to the new NIST standards by
most measures (except for key size). At NIST security level 1, this results in either
128-byte signatures with 44 kB public keys or 96-byte signatures with 67 kB public
keys. We revamp the state-of-the-art of Oil and Vinegar implementations for the
Intel/AMD AVX2, the Arm Cortex-M4 microprocessor, the Xilinx Artix-7 FPGA,
and the Armv8-A microarchitecture with the Neon vector instructions set.
Keywords: Oil and Vinegar, Intel AVX2, Arm Neon, Arm Cortex-M4, Xilinx Artix-7

1 Introduction
The Oil and Vinegar (OV) signature scheme was invented by Patarin in 1997 [42]. It was
inspired by the famous bilinearization attack against C∗. Because OV parameters were
changed [32] in response to the attack in [33] to make the Vinegar subspace larger than the
Oil subspace, it is sometimes referred to as “Unbalanced Oil and Vinegar” in the literature.
OV has a large public key. This is partially mitigated by the compressed key generation
method introduced in [43] and [44] which compressed the public key by around an order
of magnitude. With this modification, OV by itself becomes usable.

Despite this, people still tried out many OV variants, aiming to do better than plain OV
in terms of speed, key size, or both. The best-known of these variants is multi-layered OV,
or Rainbow [22], which was one of the three digital signature finalists in the NIST PQC
competition. Unfortunately, almost all of these descendant constructions have pre-deceased
OV itself, including Rainbow whose chosen parameters were broken by a devastating attack
in early 2022 [11]. The venerable OV is after [48] broke HFEv-, the sole survivor of the
earlier generations of multivariate cryptography.

While NIST has selected Dilithium, Falcon, and SPHINCS+ as winners from its post-
quantum competition for the category of digital signatures [3], NIST has also made a
supplementary call for digital signatures in which they asked for additional constructions
(preferably not based on lattices) [41]. The long history of OV inspires confidence in its
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security, so it is natural to consider Oil and Vinegar in this context. In this work, we study
how well OV performs compared to the other candidates and (soon-to-be) standards.

1.1 Our Contributions
Firstly, we propose modern instantiations of the OV signature scheme and present a justifica-
tion for the proposed parameter sets. Secondly, we have compiled a set of high-performance
OV implementations, using all known techniques from the multivariate cryptography liter-
ature. These comprise implementations for the Intel Haswell/AVX2, the Arm Cortex-M4
microprocessor, the Xilinx Artix-7 FPGA, and the Armv8-A microarchitecture with the
Neon vector instructions set. Note that the first three platforms were specifically targeted
by NIST as reference comparisons [4]1 while most handheld devices plus all newer Apple
computers use Arm CPUs with Neon. Since NIST never specified an Armv8-A standard
platform to benchmark on, we are using the popular, if somewhat dated, Raspberry Pi4b
which uses an Arm Cortex-A72.

To the best of our knowledge, we integrated all the best techniques for optimizing OV
in all categories, and we benchmarked against existing implementations where available,
concluding that OV is competitive by all measures except public key size. For all software
platforms, we show that blocked inversion as proposed for OV by Shim, Lee, and Koo [47]
is inferior to Gaussian elimination by a large margin.

For each of these platforms, our implementations include novel tricks not yet described in
the literature:

Intel AVX2. We present new techniques for generating multiplication tables, which are
critical intermediate steps for constant-time SIMD multiplication in AVX2 imple-
mentations.

Arm Neon. We present Neon implementation for vector-vector field multiplication. Based
on the vector-vector multiplication and a “lazy reduction” technique, we achieve a
faster matrix-vector multiplication than the previous vector-scalar-based implemen-
tations.

Arm Cortex-M4. We introduce novel bit-sliced and byte-sliced F256 arithmetic with the
latter outperforming the former. We present memory-efficient verification for com-
pressed OV public keys using “lazy sampling” of the public key.

Artix-7 FPGA. We designed a coprocessor with a customized instruction set, with which
we constructed the function of key generation, signing, and signature verification
schemes. The coprocessor was tested on two different Xilinx Artix-7 FPGAs and the
performance with some of the selected parameters are given, showing the power and
the limits of Artix-7 FPGAs on the implementation of OV.

Source code. The source code for all our implementations is available under CC0
copyright-waiver at https://github.com/pqov/pqov-paper.

1.2 Related Work
The most relevant related literature deal with Rainbow, for which the most up-to-date
description (NIST round 3) can be found in [21]. Much code and many ideas from Rainbow
over the years can be recycled for OV. For example, many multivariate techniques were

1While most papers today focus on the “Skylake” or later Intel models, NIST had actually specified
the Intel “Haswell” platform, which is quite old, for baseline comparisons. We present results for both
Skylake and Haswell.

https://github.com/pqov/pqov-paper
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summarized in [17, 47, 19], while one main attack against OV, the Intersection attack for
OV can be found given in [10].

1.3 Organization of this paper
We introduce Oil and Vinegar in Section 2, explaining how we selected our parameters.
Section 3 describes some implementation techniques common to our software implementa-
tions. Sections 4–7 describes in order, implementations for AVX2, Armv8-A Neon, Arm
Cortex-M4, and Artix-7 FPGA.

2 Oil and Vinegar
The Oil and Vinegar signature scheme is based on a trapdoored multivariate quadratic
map P : Fn

q → Fm
q . The trapdoor is an m-dimensional subspace O ⊂ Fn

q on which P
vanishes, i.e., P(o) = 0 for all o ∈ O.

Given O and y, one can efficiently sample preimages x such that P(x) = y, by first sampling
v ∈ Fn

q , and then solving for a vector o ∈ O such that P (v + o) = y. For any quadratic
map P : Fn

q → Fm
q and any x1, x2 ∈ Fn

q we have P(x1 + x2) = P(x1) +P(x2) +P ′(x1, x2),
for some bilinear map P ′ : Fn

q × Fn
q → Fm

q , which is called the differential of P. Therefore
P (v + o) = y simplifies to

P ′ (v, o) + �
��P(o)︸ ︷︷ ︸

P vanishes on O

= y− P(v) ,

which is a system of linear equations in o, so it can be solved efficiently. We now describe
the key generation, signing, and verification algorithms in more detail.

Key generation. To allow for a simple implementation, we make the restriction that the
trapdoor space O (the secret key) has a basis given by the rows of the matrix

(
OT 1m

)
,

where O ∈ F(n−m)×m
q . We derive O = Expandsk(seedsk) deterministically from a short

seed seedsk of length sk_seed_len, chosen uniformly at random. Most spaces of dimension
m have a basis of this form, so this restriction does not decrease the key space much.
To sample the trapdoor, one first samples O, and then chooses at random a sequence
of m multivariate quadratic polynomials that vanish on the space spanned by rows of
(OT 1m). Each multivariate quadratic polynomial pi can be uniquely represented by an
upper diagonal matrix

Pi =
(

P(1)
i P(2)

i

0 P(3)
i

)
,

such that pi(x) = xTPix. The quadratic polynomial pi vanishes on O exactly if(
OT 1m

)
Pi

(
O
1m

)
= OTP(1)

i O + OTP(2)
i + P(i)

3

is skew-symmetric, so one can simply pick P(1)
i ∈ F(n−m)×(n−m)

q (upper diagonal) and
P(2)

i ∈ F(n−m)×m
q uniformly at random, and put

P(3)
i = Upper(−OTP(1)

i O−OTP(2)
i ) ,

where Upper(M) is the unique upper diagonal matrix that is equal to M up to the addition
of a skew-symmetric matrix. Since the P(1)

i and P(2)
i are chosen uniformly at random, we

expand them from a short seed seedpk of length pk_seed_len, so that we have the option
to expand P(1)

i and P(2)
i from the short seed instead of storing all their coefficients.
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Signing. To sign a message M ∈ {0, 1}∗, the signer hashes M , together with a salt
salt ∈ {0, 1}salt_len (whose purpose is to protect against side-channel and fault injection
attacks), to get a target vector t = Hash(M ||salt) ∈ Fm

q . The signature comprises the salt
and a preimage s ∈ Fn

q for t. To compute the preimage s, the signer deterministically
generates a so-called vinegar vector v = Expandv(M ||salt||seedsk||ctr) ∈ Fn−m

q , where ctr is
a byte-sized counter, initialized at 0x0. Then the signer solves a system of linear equations
to find a vector x ∈ Fm

q such that s = (v + Ox)||x ∈ Fn
q is the desired preimage for t.

This system of linear equations is of the form Lx = t − y, where the vector y is the
evaluation of P at v||0m. More concretely, the i-th component of y is yi = vTP(1)

i v. The
i-th row of L is equal to vTSi, where Si = (P(1)

i + P(1)T
i )O + P(2)

i . The Si matrices are
relatively expensive to compute, but they are independent of the message we are signing,
so we choose to compute them only once during key generation, and store them as part of
the secret key.

The signer solves the linear system Lx = t − y for x with a linear algebra method of
choice, and then outputs the signature (salt, s), where s = (v + Ox)||x. If the linear
system is singular, then ctr is incremented by one, and the signing starts again with the
new v = Expandv(M ||salt||seedsk||ctr). After 256 failed attempts the signer aborts, but in
honest executions this happens only with an extremely small probability (≤ 2−786 for our
parameters).

Verification. The verifier accepts if P(s) = Hash(M ||salt). Concretely, he recomputes
t = Hash(M ||salt), and checks that the i-th component of t is equal to

sT

(
P(1)

i P(2)
i

0 P(3)
i

)
s , (1)

for all i from 1 to m. If the verifier has enough memory to store the P(1)
i and P(2)

i matrices
he can keep them in memory, otherwise he can expand P(1)

i and P(2)
i from seedpk on the fly.

In any case the P(3)
i matrices need to be stored in memory because they are not expanded

from a seed.

Key expansion algorithms. The high-level structure of the key-generation, signing,
and verification algorithms are given in Figure 1. There is some freedom to choose if the
P(1)

i and P(2)
i matrices are communicated as part of the public key, or recomputed on

the verifying device, and similarly, there is the freedom to either compute the Si matrices
during keygen or at signing time. Therefore, we split up the key generation algorithm
into three parts KeyGen, ExpandPK, and ExpandSK. The KeyGen algorithm outputs
(cpk, csk), compact representations of the public and secret keys. The ExpandSK and
ExpandPK algorithms take csk and cpk as input respectively, and output expanded keys
pk, and sk respectively, which can be used to run the signing and verification algorithms.
This API gives the user freedom to run the key expansion algorithms where and when
they want. For example, an application might communicate a compact cpk to the verifier,
who expands it only once and verifies a large number of signatures with the expanded
public key.

To compare Oil and Vinegar with other signature schemes, we need to fit the usual 3-part
API for signature schemes. Therefore we define and implement three variants of the Oil
and Vinegar scheme:

• classic: In this variant, the ExpandPK and ExpandSK operations are considered
to be part of the KeyGen algorithm. This means the key sizes are larger, but signing
and verification are faster.
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Table 1: Parameter sets and corresponding key and signature sizes for the Oil and Vinegar
signature scheme. The size of the compressed secret key csk is 48 bytes for all parameter
sets.

NIST
n m Fq

|pk| |sk| |cpk| |sig+salt|
SL (bytes) (bytes) (bytes) (bytes)

ov-Ip 1 112 44 F256 278 432 237 912 43 576 128
ov-Is 1 160 64 F16 412 160 348 720 66 576 96

ov-III 3 184 72 F256 1 225 440 1 044 336 189 232 200
ov-V 5 244 96 F256 2 869 440 2 436 720 446 992 260

• pkc: In this pk-compressed variant, ExpandSK is considered part of the KeyGen
algorithm, but ExpandPK is considered part of the verification algorithm. This makes
the public key much smaller (by a factor between 6 and 7), but makes verification
slower.

• pkc+skc: In this doubly-compressed variant, ExpandSK is part of the Signing
algorithm, and ExpandPK is part of the verification algorithm. Compared to the
compressed pk variant the KeyGen algorithm is faster, and the secret key becomes
tiny (only pk_seed_len + sk_seed_len bits), but the Signing algorithm becomes
much slower.

Note that these are in line with previous variants of the Rainbow signature scheme (classic,
circumzenithal, and compressed). However, we find our names more intuitive.

Parameters and Security Analysis.
Table 1 contains the parameter sets we propose and implement. For NIST security level
1 we propose two parameter sets: ov-Ip, which works over F256 to get slightly smaller
keys, and ov-Is, which works over F16, and has shorter signatures. For security levels
3 and 5, we propose one parameter set each. We use F16 := F2[x]/(x4 + x + 1) and
F256 := F2[x]/(x8 + x4 + x3 + x + 1) as the field representations. One F256 element is
stored in one byte as its coefficient array with the most significant bit corresponding to
x7. For F16, we pack two field elements into one byte with the first element in the least
significant nibble. The most significant bit of each nibble corresponds to x3. Regardless of
the security level we use pk_seed_len = 128, sk_seed_len = 256, and salt_len = 128. In
our implementation, we use randomly chosen 128-bit salts, whose size is included in the
signature sizes we report.

Table 2 contains lower bounds for the bit-complexity of the state-of-the-art attacks against
UOV. In the remainder of this section, we discuss the state-of-the-art attacks and we
clarify how the complexities in Table 2 are obtained.

Birthday attack. The first attack we consider are simple birthday attack on P(s) =
Hash(M ||salt). An attacker can compute P(si) for X inputs {si}i∈[X] and compute
Hash(M ||saltj) for Y salts {saltj}j∈[Y ]. If XY = qm, then there is a collision P(si) =
Hash(M ||saltj) with probability ≈ 1 − e−1, and the attacker can output the signature
(saltj , si) for the message M . For the sake of concreteness, we estimate for r ∈ {4, 8},
that the cost of multiplication in F2r is 2r2 bit operations, and that of addition is r bit
operations, and that the cost of a Kecack-f 1600 permutation is 217 bit operations. The
bit-cost of the attack is then

Xm(2r2 + r) + Y 217 ,

which is equal to 2
√

qmm(2r + r)217 for optimally chosen X, Y such that XY = qm. This
is the formula we use in Table 2. We have used gray-code enumeration [13] to evaluate P
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KeyGen():
1: seedsk ← {0, 1}sk_seed_len

2: seedpk ← {0, 1}pk_seed_len

3: O← Expandsk(seedsk) ▷ O ∈ F(n−m)×m
q

4: {P(1)
i , P(2)

i }i∈[m] ← ExpandP(seedpk) ▷ P(1)
i ∈ F(n−m)×(n−m)

q upper triangular
5: for i from 1 to m do ▷ P(2)

i ∈ F(n−m)×m
q

6: P(3)
i ← Upper(−OTP(1)

i O−OTP(2)
i )

7: pk← (seedpk, {P(3)
i }i∈{i,...,m})

8: return (cpk, csk = (seedpk, seedsk)).

ExpandSK(csk = (seedpk, seedsk)):
1: O← Expandsk(seedsk)
2: {P(1)

i , P(2)
i }i∈[m] ← ExpandP(seedpk)

3: for i from 1 to m do
4: Si = (P(1)

i + P(1)T
i )O + P(2)

i

5: return sk = (seedsk, O, {P(1)
i , Si}i∈[m]).

Sign(sk, M, salt):
1: seedsk, O, {P(1)

i , Si}i∈[m] ← sk
2: t← Hash(M ||salt) ▷ t ∈ Fm

q .
3: for ctr from 0 to 255 do
4: v← Expandv(M ||salt||seedsk||ctr) ▷ v ∈ Fn−m

q .
5: L← 0m×m

6: for i from 1 to m do
7: Set i-th row of L to vTSi.
8: if L is invertible then
9: y = {vTP(1)

i v}i∈[m]
10: Solve Lx = t− y for x
11: s← (v + Ox)||x ▷ s ∈ Fn

q .
12: return s
13: return Fail

ExpandPK(cpk):
1: seedpk, {P(3)

i }i∈[m] ← pk
2: {P(1)

i , P(2)
i }i∈[m] ← ExpandP(seedpk)

3: for i from 1 to m do

4: Pi =
(

P(1)
i P(2)

i

0 P(3)
i

)
5: return pk = {Pi}i∈[m].

Verify(pk, M, s, salt):
1: {Pi}i∈[m] ← pk
2: t← Hash(M ||salt)
3: return accept if sTPis = ti for all i ∈ [m].

Figure 1: The key generation, signing, and verification algorithms of the Oil and Vinegar
signature scheme.
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Table 2: Bit-complexity estimates (lower bound for the base-2 logarithm of the number
of binary gates required to perform an attack) of state-of-the-art attacks against our
proposed parameter sets. The KS and Intersection attacks are key-recovery attacks, and
the Birthday and Direct attacks are universal forgery attacks.

Parameter set Collision Direct KS Intersection
(n, m, q) log2 k log2 log2 k log2

ov-Ip (112, 44, 256) 192 2 145 218 2 166
ov-Is (160, 64, 16) 143 12 165 154 3 176

ov-III (184, 72, 256) 304 4 218 348 2 250
ov-V (244, 96, 256) 400 6 278 445 2 312

at X inputs. Realistically, an attacker would use a memoryless claw finding algorithm [50],
where it might not be possible to take full advantage of gray-code enumeration.

Direct attack. In this attack, the attacker computes Hash(M ||salt), and then use system-
solving techniques to solve for s such that P(s) = Hash(M ||salt). A priori, the attacker
might compute Hash(M ||salt) for a large number of salts, and then solve a multi-target
version of the system-solving problem. But there are no known algorithms that can take
advantage of a large number of targets (beyond the naive birthday algorithm from the
previous section). So, we estimate the complexity of this attack as the complexity of
solving a random system of m quadratic equations in n variables. The state-of-the-art
approach is to first take advantage of the underdeterminedness of the system by reducing
to the problem of solving a system of m′ = m − 1 equations in n′ = m − 1 variables
with the approach of Thomae and Wolf [49], and then using the hybrid WiedemannXL
algorithm to solve the new system. This has an estimated bit complexity of

min
k

qk · 3
(

n′ − k + dn′−k,m′

dn′−k,m′

)2(
n′ − k + 2

2

)
(2r2 + r) ,

where dN,M is the operating degree of XL, which is the first d > 0 such that the the
coefficient of td in the power series expansion of (1− t2)M (1− t)−(N+1) is non-positive.

Kipnis-Shamir attack. The Kipnis-Shamir attack [33] tries to recover the secret key O
from the public map P. The attack was first proposed for the case n = 2m, where it runs
in polynomial time. Later, it was generalized to n > 2m, and it runs in time O(qn−2mn4)
according to the literature if n is even or q is odd. However, this is an overestimate of the
cost of the attack. The cost of finding a single vector in O is dominated by the cost of
computing on average qn−2m characteristic polynomials of n-by-n matrices, and solving the
same number of linear systems in n variables. This can be done in time O(qn−2mnω log(n))
field multiplications, where ω is the exponent of matrix multiplication. The n4 factor in
the literature was obtained by putting ω = 3, and repeating the attack m = O(n) times
to get a basis for O. Repeating the attack is wasteful because once a first vector in O
is found, the other vectors in O can be found more efficiently with other methods (e.g.,
see [10]). For Table 2, we estimate the bit complexity of the attack as

qn−2mn2.8(2r2 + r) ,

which we believe is an underestimate of the cost of the attack for our proposed parameters.

Intersection attack. The intersection attack tries to simultaneously find k vectors in O,
by solving a system of quadratic equations for some vector in the intersection ∩k

i=1MiO,
for some matrices Mi. The attack only works if the intersection is nonempty, which
is guaranteed if n < 2k−1

k−1 m. For details, we refer to [10]. The cost of the attack is
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dominated by the cost of solving a random system of M =
(

k+1
2
)
m − 2

(
k
2
)

equations in
N = kn− (2k − 1)m variables. For the ov-Ip parameter set we use k = 3, even though
n = 2k−1

k−1 m. This means that the intersection is not guaranteed to be nontrivial, and the
attack is likely to fail. However, one can check that for these parameters the intersection
is non-trivial with probability 1/(q − 1), so on average we only need to repeat the attack
q − 1 = 15 times, which is still cheaper than running a single attack with k = 2.

Symmetric primitives
Throughout OV, we require various hash functions and pseudo-random functions. We
instantiate the performance uncritical functions Hash, Expandv, and Expandsk processing
either public or secret data using instances of shake256 [40]. For the performance critical
Expandpk processing only public inputs, we use aes128 [39] as it results in much faster
implementations.

Hash(M ||salt) : {0, 1}∗ × {0, 1}128 → Fm
q

Maps a message M and a 16-byte salt to the target vector t. The size of the target
vector is m · log2 |Fq| bits, i.e., 32, 44, 72, and 96 bytes for ov-Is, ov-Ip, ov-III,
and ov-V, respectively. We implement it as shake256(M ||salt).

Expandv(M ||salt||seedsk||ctr) : {0, 1}sk_seed_len × {0, 1}∗ × {0, 1}128 × {0, 1}8 → Fn−m
q

Samples a vinegar vector v given the message M , a 16 byte salt, the secret seed
seedsk, and a 1-byte counter. The output size is (n−m) · log2 |Fq| bits, i.e., 48, 68,
112, and 148 bytes for ov-Is, ov-Ip, ov-III, and ov-V, respectively. We implement
it as shake256(M ||salt||seedsk||ctr).

Expandsk(seedsk) : {0, 1}pk_seed_len → Fm·(n−m)
q

Expands the secret key to the matrix O. The output size is (n−m) ·m · log2 |Fq| bits,
i.e., 3 072 (ov-Is), 2 992 (ov-Ip), 8 064 (ov-III), 14 208 (ov-V) bytes. We sample
the matrix in column-major order as it is required in key generation and signing. We
implement it using shake256(seedsk).

ExpandP(seedpk) : {0, 1}pk_seed_len → Fm·((n−m)(n−m+1)/2+m·(n−m))
q

Expands the 16 byte public seed to the matrices P(1) = {P(1)
i }i∈[m] and P(2) =

{P(2)
i }i∈[m]. We first sample the P(1) matrices, and then the P(2) matrices. The

m matrices are expanded in an interleaved fashion, in column-major order. That
is, we start by sampling the (0,0) entry of P(1)

1 , followed by the (0,0) entry of P(1)
2 ,

etc. After sampling the (0,0) entry of the last matrix P(1)
m we continue with the

(1,0) entries, followed by the (1,1) entries and proceeding column by column, i.e., in
lexicographic order. The size of P(1) is m · (n−m)(n−m+1)

2 · log2 |Fq| bits, i.e., 148 992
(ov-Is), 103 224 (ov-Ip), 455 616 (ov-III), 1 058 496 (ov-V) bytes. The size of P(2)

is m · m · (n − m) · log2 |Fq| bits, i.e., 196 608 (ov-Is), 131 648 (ov-Ip), 580 608
(ov-III), 1 363 968 (ov-V) bytes. We choose ExpandP as aes128ctr using seedpk as
the key and a zero nonce. If the aes128ctr API allows passing a custom counter
value, this allows sampling at arbitrary output positions which is tremendously useful
for memory-constrained devices. As the columns of the public key corresponding to
zero variables in the signature are not required for verification, this also allows to
omit the sampling of those columns altogether. This is particularly useful for F16 as
approximately 1/16 of the variables in each signature are zero.

Note that we do not require ExpandP to be a cryptographically secure stream cipher.
We (optionally) propose to use aes128ctr reduced to 4 (instead of 10) rounds. 4-
round aes128 has been proven to have a maximal differential probability of 2−114 [31]
which we deem sufficient for public-key expansion.
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Algorithm 1 Constant-time linear equation
solving using matrix inversion
Input: Linear equation Lx = t− y
Output: Solution x ∈ Fm or ⊥

1: L′ ← (L|Im) ∈ Fm×2m

2: for i← 0, . . . , m− 1 do
3: for j ← i + 1, . . . , m− 1 do
4: if L′

i,i = 0 then
5: for k ← i, . . . , 2m− 1 do
6: L′

i,k ← L′
i,k + L′

j,k

7: if L′
i,i = 0 then return ⊥

8: p−1 ← L′−1
i,i

9: for k ← i, . . . , 2m− 1 do
10: L′

i,k ← p−1 · L′
i,k

11: for j ← 0, . . . , m− 1 do
12: if j ̸= i then
13: for k ← i, . . . , 2m− 1 do
14: L′

j,k ← L′
j,k + L′

j,i · L′
i,k

15: L−1 ← right half of L′

16: return x = L−1(t− y)

Algorithm 2 Constant-time linear equation
solving using Gaussian elimination directly
Input: Linear equation Lx = t− y
Output: Solution x ∈ Fm or ⊥

1: L′ ← (L|t− y) ∈ Fm×(m+1)

2: for i← 0, . . . , m− 1 do
3: for j ← i + 1, . . . , m− 1 do
4: if L′

i,i = 0 then
5: for k ← i, . . . , m do
6: L′

i,k ← L′
i,k + L′

j,k

7: if L′
i,i = 0 then return ⊥

8: p−1 ← L′−1
i,i

9: for k ← i, . . . , m do
10: L′

i,k ← p−1 · L′
i,k

11: for j ← 0, . . . , m− 1 do
12: if j ̸= i then
13: for k ← i, . . . , m do
14: L′

j,k ← L′
j,k + L′

j,i · L′
i,k

15: for i← m− 1, . . . , 1 do
16: for j ← 0, . . . , i− 1 do
17: L′

j,m ← L′
j,m + L′

i,jL′
i,m

18: return last column of L′

3 Implementation Techniques
In this section, we describe our implementation techniques that are shared among platforms
for linear equation solving (Subsection 3.1) and verification (Subsection 3.2).

Notation. Our implementations represent F16 and F256 as binary polynomials packed into
bytes as specified in Section 2. In this paper, however, we sometimes write the polynomials
as decimal numbers for a more compact presentation. We use the straightforward conversion,
i.e., 1 corresponds to 1, 2 corresponds to x1, 4 corresponds to x2, and so forth.

3.1 Solving linear equations
OV signing requires solving the system of linear equations Lx = t− y for the m variables
x. It is commonly implemented in either of two ways: Either one directly computes the
solution using constant-time Gaussian elimination, or one first computes the inverse of
L and multiplies it by the right side of the equation. We outline both approaches in
Algorithm 1 and Algorithm 2. Both algorithms proceed in a similar way: As the first step
(line 3) in the outer loop, we conditionally add all following rows to make sure the pivoting
element L′

i,i is non-zero. This has to be performed in constant time. In case it is still zero,
we return ⊥ (line 7) as the matrix is not invertible or the system of linear equations has
no unique solution. Then, we invert the pivoting element (line 8) and multiply the current
row by the inverse (line 9). We then add multiples of that row to the remainder of the
matrix (line 11). In the case of matrix inversion, we take the right half of the resulting
matrix L′ and multiply it by the vector t−y to obtain the solution x (line 16). In the case
of solving the linear equations directly, we back-substitute the variables into the system of
equations to obtain the solutions (line 15).
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Previous work by Shim, Lee, and Koo [47] used the approach of Algorithm 1 for AVX2
implementations of Rainbow and OV as it can be significantly sped-up by using blocked
matrix inversion which allows replacing a m×m matrix inversion by two m/2×m/2 matrix
inversions, two matrix-matrix multiplications and various matrix-vector multiplications.
While Rainbow explicitly computed the inverse matrix for signing in its specification [21,
algorithm 7], however, Shim, Lee, and Koo did not study if the blocked matrix inversion
can be outperformed by directly solving the system of equations (Algorithm 2). By
counting the number of multiplications involved, we can estimate the approximate cost:
The inversion of a m×m matrix requires 3/2 ·m3 field multiplications, while a m×m
matrix product requires m3 multiplications. Hence, a blocked matrix inversion costs at
least 2 · (3/2 · (m/2)3) + 2 · (m/2)3 = 5/8m3 multiplications. On the other hand, solving a
system of m equations in m variables directly costs m3/3 multiplications. Hence, from the
number of multiplications, it does not appear promising to use blocked matrix inversion.
We will show in later sections that it indeed is not worthwhile for any of our software
implementations.

Reducing the number of conditional additions. For both Algorithm 1 and Algorithm 2,
we have to perform a large number of conditional additions in lines 3-6 to achieve constant-
time behavior. In practice, most of these additions will not actually be performed as the
pivoting element is already nonzero. We instead propose to limit the additions to a small
number of rows. We propose to add at most 15 rows for F16 and at most 7 rows for F256.
This results in a probability of at most m ·16−16 = 2−58 and m ·256−8 ≤ 2−57.4 to wrongly
abort for the F16 and F256 parameters respectively, which we deem sufficiently small.

3.2 Verification
For OV verification, we evaluate the public map (Equation 1) represented by a Macaulay
matrix at the variables given by the signature s and verify that the output equals the
hash of the message. Note that OV verification is exactly the same as the one of Rainbow
and, thus, the same techniques apply. We make use of a technique first introduced by
Chou, Kannwischer, and Yang [19]: Instead of multiplying the monomials sisj by the
corresponding column of the Macaulay matrix and accumulating it into a single accumulator,
we use multiple accumulators and do not perform any multiplication while passing through
the matrix. At the end of verification, each accumulator is multiplied by the corresponding
field element to obtain the final result. This allows for delaying all multiplications to the
end and, hence, vastly reducing the number of required multiplications. This results in a
substantial speed-up. In the case of F16, we use 15 accumulators: One for each possible
value of sisj except for zero as those columns can be discarded straight away. In the
case of F256, we use 2 × 15 accumulators: One set for the four least significant bits, and
one set for the four most significant bits. Each column gets added to the corresponding
accumulator of each set. By using different accumulators for the high and low bits, we
keep the memory requirements for this approach reasonable while still vastly reducing
the number of required costly field multiplications. Note that this approach results in
signature-dependent memory access patterns which may be problematic in case signatures
are secret and if the targeted device leaks memory addresses, e.g., through cache timing
side channels. For the majority of cases, however, the signature is public and this approach
should be used for signing speed.

Skipping parts of the public key. As already pointed out by Chou, Kannwischer, and
Yang [19], the verification can be further speed-up by exploiting that in case a monomial
sisj is zero, the corresponding columns in the Macaulay do not affect the result as they
are multiplied by zero. We, hence, skip ahead in case either of the variables is zero. This



Beullens, Chen, Hung, Kannwischer, Peng, Shih, and Yang 11

is particularly significant when working with F16 as 1/16 of variables are expected to be
zero, which means 31/256 of the products sisj is expected to be zero.

“Lazy sampling”. When using compressed public keys, the P(1)
i and P(2)

i matrices are
sampled pseudo-randomly from a public seed by computing ExpandP(seedpk). Straight-
forward implementations first sample the entire pseudo-random part and then call the
classic verification routine. However, if some variables in the signature are zero, then this
is wasteful as some parts of the public key are multiplied by zero, i.e., not used. We can
simply advance the state of the PRNG (through a function prng_skip) by increasing the
counter of aes128ctr state. We refer to this technique as “lazy sampling”. Note that this
optimization is made possible by choosing a PRNG construction that allows sampling
output at arbitrary positions. This was not possible with previous constructions, e.g., used
within Rainbow which requires sampling all the output sequentially. It would also not
be possible when using a sponge-based extendable-output function (XOF) like shake256
which may have appeared to be a natural choice for seed expansion. “Lazy sampling”
results in a significant speed-up especially for F16.

4 X86 AVX2 Implementation
In this section, we present our optimization for x86-64 platforms, which is designated as
the reference platform in NIST PQC standardization [41]. More precisely, we focus on the
optimization for the AVX2 instruction set, which is arguably the most useful instruction set
for its availability on modern x86 platforms. While NIST is requiring code primarily for the
Intel Haswell microarchitecture, we additionally study the Intel Skylake microarchitecture
as it is easily available more than Haswell and results in better performance.

4.1 AVX2 Instruction Set
Advanced Vector Extensions (AVX) are instruction extensions to the x86 architecture
and Advanced Vector Extension 2 (AVX2) is an AVX extensions that supports most
integer operations with 256-bit vector registers. AVX2 was introduced in the Intel Haswell
architecture in 2013 and is commonly supported in x86 CPUs today. Newer CPUs
also support AVX-512 with 512-bit vector registers. However, as AVX2 is much more
widely adopted, we focus on AVX2 implementations in this paper. AVX2 provides single-
instruction-multiple-data (SIMD) instructions, which treats its 256-bit registers as vectors
of 8-, 16-, 32-, or 64-bit vector elements and operates on the vector elements simultaneously.
The available instructions implement most of the common logic, arithmetic, data movement,
and memory access operations. There are 16 vector registers provided in AVX2.

By far the most relevant AVX2 instruction for OV implementation is vpshufb. It operates
as

vpshufb( ymm_t , ymm_i )→ ymm_d

where ymm_t and ymm_i are two 256-bit input registers and ymm_d represents its 256-bit desti-
nation registers. Among the two inputs, ymm_t = (t0, . . . , t15, q0, . . . , q15) stores two 128-bit
tables of 16 8-bit entries and ymm_i = (i0, . . . , i15, j0, . . . , j15) stores 4-bit indices pointing
to particular entries of the tables in ymm_t. Its output ymm_d = (ti0 , . . . , ti15 , qj0 , . . . , qj15)
provides the results of 32 table lookup operations. When the indices are negative numbers,
it sets zero to the results. The operation can also be seen as shuffling byte data in the
ymm_t, as suggested by its name. Note that vpshufb executes in constant time.
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4.2 Finite Field Arithmetics
In this section, we discuss AVX2 implementations of field multiplication on F16 :=
F2[x]/(x4 + x + 1) and F256 := F2[x]/(x8 + x4 + x3 + x + 1). Since AVX2 contains
no instruction tailored to implementing binary field arithmetic, we resort to a table-based
implementation using vpshufb. Note that with AVX-512, Intel introduced the Galois
Field New Instructions (GF-NI) dedicated to 8-bit binary GF arithmetic. We expect these
instructions to benefit OV implementations significantly in a similar way as shown in [23]
for Rainbow implementations.

Field multiplication with table lookup instructions. Since the SSE instruction set (the
predecessor of AVX), the field multiplication within multivariate cryptography heavily
relies on table lookup operations as proposed in [15]. Although the vector width has grown
to 256 bits with AVX2 instructions, the same techniques are used for field multiplication.

In AVX2 OV implementation, we rely heavily on the vpshufb instruction for performing
vector-scalar multiplication, which multiplies a vector of field elements by a scalar. Specifi-
cally for F16, to multiply the vector (a0, a1, . . . , a31) by a scalar b ∈ F16, we prepare two
copies of a pre-computed multiplication table b · (0, 1, . . . , 15) in the register tab_b and
load our data (a0, a1, . . . , a31) in ymm_a. Then we perform the 32 multiplications on F16
with one vpshufb operation

vpshufb(tab_b, ymm_a)→ b · (a0, a1, . . . , a31) . (2)

For F256 multiplication, we compute vector-scalar multiplication using 2 vpshufb instruc-
tions. Given a vector a = (a0, a1, . . . , a31) to be multiplied by a scalar b ∈ F256, we
first compute 2 intermediate vectors lownib(a) and highnib(a), where highnib(◦) and
lownib(◦) refer to the higher 4 bits (higher degrees) and lower 4 bits, respectively. Those
can be obtained using 2 AND with masks for fetching 4-bit data and one logic shift for
shifting high degree bits to index range of vpshufb. Then we need 2 pre-computed multi-
plication tables b · (0, 1, . . . , 15) and b · (0 ≪ 4, 1 ≪ 4, . . . , 15 ≪ 4) storing the products
of all possible lower and higher 4-bit values in F256 multiplied by b. Again, we have two
copies of the two 16-byte tables stored in two 256-bit registers tab_bl and tab_bh. We
can produce the 32 products (a0, a1, . . . , a31) · b with two vpshufb operations

vpshufb(tab_bl, lownib(a))⊕ vpshufb(tab_bh, highnib(a)) . (3)

Preparing the multiplication tables becomes an important issue when applying the table
lookup multiplication. When working on non-secret data, a typical implementation stores
tables of all possible values in memory. When computing (a0, a1, . . . , a31) · b, it loads the
table of b from memory indexed by the value of b. However, when b is secret this approach
cannot be used as it would result in a timing side-channel leakage through cache attacks.
To solve the constant-time issue, Chen, Li, Peng, Yang, and Cheng [17] proposed to
calculate the required tables on demand. They batched the computation of multiplication
tables for multiple scalars. For example of F16, to compute 16 multiplication tables for 16
multiplicands b = (b0, . . . , b15) ∈ F16

16, They first calculated 16 vector-scalar multiplications
with 16 known multiplicands, i.e., 0 · b, 1 · b, 2 · b, 3 · b, and so on. Then, they collected
16 multiplication tables of b by a 16× 16 matrix transpose on the previous 16 products.

In the following, we present two new methods for generating multiplication tables. One for
single multipicands and the other for multiple multiplicands, which improves the method
in [17].

Fast generation of multiplication tables for individual elements. Our methods rely
on exploiting the basis elements of underlying fields, which are {1, 2, 4, 8} in F16 and
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static inline
__m256i gf256_generate_multab_avx2( uint8_t b ) {

__m256i bb = _mm256_set1_epi16( b );
__m256i bb_sr1 = _mm256_srli_epi16( bb, 1 ); // shift right 1 bit
return ( _multab_x1_x10 & _mm256_cmpgt_epi16(bb & _const_1 , _const_0) )

^ ( _multab_x2_x20 & _mm256_cmpgt_epi16(bb_sr1 & _const_1 , _const_0) )
^ ( _multab_x4_x40 & _mm256_cmpgt_epi16(bb & _const_4 , _const_0) )
^ ( _multab_x8_x80 & _mm256_cmpgt_epi16(bb_sr1 & _const_4 , _const_0) )
^ ( _multab_x10_x1b & _mm256_cmpgt_epi16(bb & _const_16 , _const_0) )
^ ( _multab_x20_x36 & _mm256_cmpgt_epi16(bb_sr1 & _const_16 , _const_0) )
^ ( _multab_x40_x6c & _mm256_cmpgt_epi16(bb & _const_64 , _const_0) )
^ ( _multab_x80_xd8 & _mm256_cmpgt_epi16(bb_sr1 & _const_64 , _const_0) );

}

Figure 2: Generating multiplication table for one element b ∈ F256 in C code with Intel
intrinsics [28].

{1, 2, . . . , 128} in F256. To generate the multiplication table of one secret element, we
conditionally accumulate pre-defined multiplication tables of basis values based on corre-
sponding secret bits. Hence there are 4 and 8 conditional additions for the 4 and 8 basis
values in F16 and F256 respectively.

Figure 2 shows the C code for generating the table of one element b ∈ F256. It fetches
particular bits of b by performing an AND with the corresponding constants of basis values
and gets masks by comparing the previous results with zero. It tests the bits on the
original value and shifted value for using fewer basis constants and thus reducing the
register pressure. By masking (AND) pre-defined multiplication tables of basis values with
previous masks, it conditionally accumulates the contributions of particular bits into the
result table. The main part of the function clearly computes 8 conditional additions. For
generating the table of one multiplicand ∈ F16, we have a similar code except for different
pre-defined multiplication tables and only 4 conditional additions for its return value.

There are other efficient implementations of the conditional addition depending on the
underlying hardware architecture. For example, on the Intel Skylake architecture, the 16-bit
vector multiplication (vpmullw) has higher throughput than on the Haswell architecture.
We achieve a faster implementation by replacing the compare-and-mask operations with
multiplication by 1 or 0 (i.e., shifting the desired bit to the least significant bit).

Fast batched generation of multiplication tables. We achieve fewer instruction counts
per element than the previous method for generating tables of many elements. We first
multiply all elements by all possible basis values of the underlying field and then rearrange
the products to the proper positions to obtain the multiplication tables. For example,
when generating tables of a F16 vector b = (b0, . . . , b31), we first calculate their products
with basis values {1, 2, 4, 8}, i.e., 1 · b, 2 · b, 4 · b, and 8 · b. For collecting the table of
b0, we broadcast the product of 1 · b0 to positions {1, 3, 5, . . . , 15}, which are the indices
with value 1 at its first bit, resulting in b0 · (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1). The
product of 2 · b0 is broadcasted to positions {2, 3, 6, 7, 10, 11, 14, 15}, which are the indices
with value 1 at its second bit, resulting 2b0 · (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1). The
broadcasted results for 4 · b0 and 8 · b0 are 4b0 · (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1) and
8b0 · (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) respectively. Then, we sum up (XOR) the 4
broadcast results for the table b0 · (0, 1, 2, 3, . . . , 15).

Figure 3 shows the C code for generating multiplication tables of 16 F256 elements. Given
a 128-bit input variable a storing the 16 F256 elements, it first computes 4 256-bit variables
a_x1_x10, a_x2_x20, a_x4_x40, and a_x8_x80 for the products of all basis values. Then,
with the vpshufb instruction, it broadcasts the products to the proper positions. The mul-
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static inline void gf256v_generate_16_multab_avx2( __m256i multabs[16] , __m128i a ) {
__m256i aa = _mm256_setr_m128i( a , a );
__m256i a_l = aa & _const_0x0f; // low 4 bits
__m256i a_h = _mm256_srli_epi16(aa,4) & _const_0x0f; // high 4 bits
__m256i a_x1_x10 = _mm256_shuffle_epi8( _multab_x01_x10 , a_l ) // vpshufb

^_mm256_shuffle_epi8( _multab_x10_x1b , a_h ); // vpshufb, xor
__m256i a_x2_x20 = _mm256_shuffle_epi8( _multab_x02_x20 , a_l ) // vpshufb

^_mm256_shuffle_epi8( _multab_x20_x36 , a_h ); // vpshufb, xor
__m256i a_x4_x40 = _mm256_shuffle_epi8( _multab_x04_x40 , a_l ) // vpshufb

^_mm256_shuffle_epi8( _multab_x40_x6c , a_h ); // vpshufb, xor
__m256i a_x8_x80 = _mm256_shuffle_epi8( _multab_x08_x80 , a_l ) // vpshufb

^_mm256_shuffle_epi8( _multab_x80_xd8 , a_h ); // vpshufb, xor
multabs[0] = _mm256_shuffle_epi8(a_x1_x10,_broadcast_x1_0) // vpshufb

^ _mm256_shuffle_epi8(a_x2_x20,_broadcast_x2_0) // vpshufb, xor
^ _mm256_shuffle_epi8(a_x4_x40,_broadcast_x4_0) // vpshufb, xor
^ _mm256_shuffle_epi8(a_x8_x80,_broadcast_x8_0); // vpshufb, xor

for(int i=1;i<16;i++) { // a loop unrolling here can save the shift operations.
a_x1_x10 = _mm256_srli_si256( a_x1_x10 , 1 ); // shift right 1 byte
a_x2_x20 = _mm256_srli_si256( a_x2_x20 , 1 ); // shift right 1 byte
a_x4_x40 = _mm256_srli_si256( a_x4_x40 , 1 ); // shift right 1 byte
a_x8_x80 = _mm256_srli_si256( a_x8_x80 , 1 ); // shift right 1 byte
multabs[i] = _mm256_shuffle_epi8(a_x1_x10,_broadcast_x1_0) // vpshufb

^ _mm256_shuffle_epi8(a_x2_x20,_broadcast_x2_0) // vpshufb, xor
^ _mm256_shuffle_epi8(a_x4_x40,_broadcast_x4_0) // vpshufb, xor
^ _mm256_shuffle_epi8(a_x8_x80,_broadcast_x8_0); // vpshufb, xor

}
}

Figure 3: Generating multiplication tables for 16 elements in C code with Intel intrinsics [28].

tiplication tables for all 16 elements are generated in a loop. In our actual implementation,
we compute 2 tables in one loop iteration by broadcasting the 0-th and 1-st positions for
reducing the number of shift-right instructions as the comments in the figure. Compared
to the method in [17], there are two differences. First, our method multiplies only 4 basis
values instead of all possible 16 values in the multiplication tables. Second, we broadcast
the product with vpshufb instruction avoiding the matrix transpose operation.

In summary, we spend 16 AND, 8 vpcmpgtw, and 7 XOR instructions for generating one
multiplication table in Figure 2; and 4 vpshufb, 2 vpsrldq, and 3 XOR for one table on
average in Figure 3. From our benchmarking results on the Intel Haswell architecture, it
costs on average 23.0 and 10.3 cycles for computing one multiplication table with Figure 2
and Figure 3 (with a loop unrolling by 2) respectively.

4.3 Data Alignment for Gaussian Elimination on SIMD Architectures
While implementing Gaussian elimination (Algorithm 2) on SIMD architectures, we perform
row operations on matrices of dimension m × (m + 1), usually resulting in row vectors
of unfriendly lengths for SIMD architectures. In OV, the row vectors are of length 65
over F16 and 45, 73, and 97 over F256. In the case of F16, a 256-bit AVX2 register is
capable of storing 64 elements. Thus vectors of 65 elements are stored and processed in 2
registers. A naive implementation would store the starting 64 elements in one register and
65-th element in another. Then it always operates on 2 registers while performing row
operations.

Since the lengths of row vectors shorten during the elimination (see indices of loops at
line 5, 9, and 13 in Algorithm 2), a better data alignment of vectors in SIMD registers
improves the performance over the naive implementation. For storing a row vector of 65
F16 elements, we can store the first element in one register and the remaining 64 elements
in a second register. Then we process a row vector of 2 registers only for eliminating the
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first column of matrices while performing row operations in Algorithm 2. After the first
column, we always process vectors of one register for row operations. This saves roughly
half of the operations compared to the naive approach. The same principle applies to all
matrices of F256 in OV implementations. However, to save the cost for moving F16 data
(4-bit units), we adopt the alignment of naive implementation for F16 matrices and swap
the last column and first column after the first column is eliminated. This results in the
same effect of processing vectors with fewer registers.

4.4 Symmetric Cryptography
For implementing the four symmetric primitives (Hash, Expandv, Expandsk, and ExpandP),
we call the OpenSSL library when relating to standard cryptographic primitives, e.g.,
shake256 and aes128. For ExpandP using round-reduced AES, we adapt the aes128ctr
implementation in [24], which utilizes x86 AES instructions, to implement only 4 AES
rounds.

4.5 Results
We benchmark our AVX2 optimization of OV on the Intel Haswell and the Intel Skylake
architectures. The C source code is compiled with clang version 14.0.0-1ubuntu1 and
the performance numbers are measured on Intel Xeon E3-1230L v3 1.80GHz (Haswell)
and Intel Xeon CPU E3-1275 v5 3.60GHz (Skylake) with turbo boost and hyper-threading
disabled.

Table 3 reports the performance of our AVX2 implementations and comparisons to other
standard PQC schemes. In the table, we merge the numbers for Sign() from classic
and pkc versions and Verify() from pkc and pkc+skc to indicate that they use the
same implementations. Among all comparisons, Table 3 shows that 1) ov-Ip has the
fastest signing while ov-Is signing is only 2% slower. 2) ov-Is has the fastest verification
although its public key is larger than ov-Ip. This reflects the fact that ov-Ip uses
more XOR operations for the 2 accumulators while evaluating F256 public polynomials (see
Subsection 3.2). 3) For verification with compressed keys, the computation of ExpandP,
i.e., aes128ctr, dominates the execution time, which can be seen by comparing with the
results of 4-round AES in Table 4. The round-reduced AES improves the verification time
by around 40%. 4) For signing with compressed secret keys, the main computation spends
on expanding the compressed keys.

5 Arm Neon Implementation
In this section, we present our optimization of OV for the Armv8-A architecture. We briefly
introduce the Armv8-A architecture and highlight some useful instructions. Subsection 5.2
and Subsection 5.3 present our optimizations for field multiplication and matrix-vector
multiplications, respectively. We conclude the section with our performance results in
Subsection 5.5.

5.1 Neon Instruction Set
Armv8-A is a 64-bit Arm architecture that is part of Arm’s application (A) profile targeting
high-performance computing, for example, for PCs, smartphones, and servers. It is an
important platform in addition to x86, yet attracting relatively few studies of NIST PQC
candidates. For optimizing OV, we focus on the Advanced SIMD (Neon) instructions
that are part of the Armv8-A architecture. While the name “Neon” and many of its
functionalities are shared among many Arm architectures, we denote in this paper with
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Table 3: Benchmarking results of AVX2 implementations. Numbers are median CPU
cycles of 1000 executions.

Haswell Skylake
Schemes KeyGen Sign Verify KeyGen Sign Verify

ov-Ip 3 311 188 116 624 82 668 2 903 434 105 324 90 336

ov-Ip-pkc 3 393 872 311 720 2 858 724 224 006
ov-Ip-pkc+skc 3 287 336 2 251 440 2 848 774 1 876 442

ov-Is 4 945 376 123 376 60 832 4 332 050 109 314 58 274

ov-Is-pkc 5 002 756 398 596 4 376 338 276 520
ov-Is-pkc+skc 5 448 272 3 042 756 4 450 838 2 473 254

Dilithium 2† [37] 97 621∗ 281 078∗ 108 711∗ 70 548 194 892 72 633
Falcon-512 [45] 19 189 801∗ 792 360∗ 103 281∗ 26 604 000 948 132 81 036
SPHINCS+‡ [27] 1 334 220 33 651 546 2 150 290 1 510 712∗ 50 084 397∗ 2 254 495∗

ov-III 22 046 680 346 424 275 216 17 603 360 299 316 241 588

ov-III-pkc 22 389 144 1 280 160 17 534 058 917 402
ov-III-pkc+skc 21 779 704 11 381 092 17 157 802 9 965 110

ov-V 58 162 124 690 752 514 100 48 480 444 591 812 470 886

ov-V-pkc 57 315 504 2 842 416 46 656 796 2 032 992
ov-V-pkc+skc 57 306 980 26 021 784 45 492 216 22 992 816
† Security level II. ‡ Sphincs+-SHA2-128f-simple. ∗ Numbers from SUPERCOP [7].

Table 4: Benchmarking results of AVX2 implementations using 4-round AES for public-key
expansion. Numbers are median CPU cycles of 1000 executions.

Haswell Skylake
Schemes KeyGen Sign Verify KeyGen Sign Verify

ov-Ip-pkc 3 130 128 114 012 182 100 2 815 902 106 336 150 902ov-Ip-pkc+skc 3 154 404 2 113 924 2 861 082 1 818 690

ov-Is-pkc 4 799 564 117 948 205 504 4 337 958 110 602 167 886ov-Is-pkc+skc 4 810 612 2 755 060 4 252 570 2 366 766

ov-III-pkc 21 419 104 348 756 714 252 17 441 792 300 716 589 846ov-III-pkc+skc 21 203 604 11 222 092 16 909 288 9 603 518

ov-V-pkc 55 983 388 723 628 1 516 652 45 508 552 624 774 1 268 998ov-V-pkc+skc 56 136 556 24 824 672 44 792 434 21 823 506

“Neon” the Armv8-A (AArch64) instruction architecture specifically. We benchmark our
Neon implementation on the Arm Cortex-A72 [36] processor, which is commonly available
on a Raspberry Pi4b. We also provide benchmarks for the Apple M1.

Armv8-A Neon provides 32 vector registers of 128-bit each. Neon instruction interprets
these as vectors of 8-, 16-, 32-, or 64-bit elements. As suggested in its name, these elements
are processed in SIMD manners. Most commonly used instructions, such as memory
access, logic, and arithmetics, can be processed in the Neon instruction set. Unlike AVX2,
Neon provides dedicated instructions for (binary) polynomial multiplication which are
useful for binary field multiplication. We list the heavily used instructions in our Neon
implementation:

TBL/TBX: These table lookup instructions are similar to vpshufb on AVX2. However, they
are capable of larger tables up to 64-byte entries (in 4 vector registers) which are
indexed using 6-bit indices. When the indices are out of range, TBL set results to 0
and TBX keeps the destinations unchanged. In our implementation, we use TBL in
almost the same way as the vpshufb instruction.
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PMUL: The instruction multiplies 16 8-bit F2 polynomials, producing 16 8-bit products of
F2 polynomials.

PMULL/PMULL2: These are the “widening” versions of the PMUL instruction. The PMULL
instruction multiplies two 8× 8-bit sources to one 8× 16-bit destination. Since one
128-bit Neon register contains 16× 8-bit data, the other instruction PMULL2 performs
the same computation as PMULL on the most significant 8× 8-bit of the sources.

5.2 Finite Field Arithmetics
Since TBL in Neon performs similar functionalities to vpshufb in AVX2, we immediately
have a TBL based vector-scalar multiplication by replacing the vpshufb instructions with
TBL in Equation 2 and Equation 3. We treat it as a baseline for our Neon OV implementation
and discuss other optimizations based on Neon instructions.

In this section, we present a NEON implementation for vector-vector componentwise
multiplication by applying polynomial multiplication instructions PMULL and PMULL2. It is
a more general multiplication, since vector-scalar multiplication can be seen as a special
case of vector-vector multiplication. With the vector-vector multiplication, we first develop
a method for generating multiplication tables with less instruction counts than methods
in Subsection 4.2. We also compare the efficiency between the TBL based vector-scalar
and PMULL based vector-vector multiplications to conclude this section. The benchmark
shows PMULL multiplication performs better than TBL multiplication for short vectors when
the cost of generating multiplication is included. Based on the PMULL multiplication, we
develop a fast matrix-vector multiplication in Subsection 5.3.

Vector-vector componentwise multiplications. For multiplication on F16 = F2[x]/(x4 +
x + 1), we use one PMUL to multiply degree-3 source polynomials for products of degree-6
F2 polynomials. A reduction step then reduces the degree-6 polynomials to degree-3. It
first shifts (USHR) the parts of degree-4 to 6 to degree-0 to 2, multiplies the shifted parts by
the polynomial x + 1 by another PMUL, and finally accumulates (EOR) the second products
to the parts of degree-0 to 2 of the first products. The PMUL instruction in the reduction
step can be replaced by a TBL instruction with an extra load operation for a “reduction”
table.

Figure 4 implements vector-vector multiplication on F256 with Arm Neon intrinsics [5].
We apply one PMULL and one PMULL2 to perform two 8 × 8 → 16 multiplication on the
sources of lower and higher 64-bit of Neon registers. They produce 16 16-bit products
in two Neon registers. For reducing the 16-bit polynomials to 8-bit forms, we first apply
one UZP1 and one UZP2 to split the 16-bit polynomials into two 8-bit polynomials in two
registers, containing the parts of degree-0 to 8 and degree-8 to 15 respectively. We then
apply two TBL instructions for reducing the polynomials of degree-8 to 11 and degree-12
to 15, respectively. The results are accumulated (EOR) into the register of degree-0 to 8 to
finish the multiplication. Note that, after splitting products into two polynomials of high
and low degrees, the remaining reduction step uses the same operations as Equation 3
except the tables are different.

Comparing to the vector-scalar multiplication described in Subsection 4.2, the vector-
scalar costs fewer instructions for performing field multiplication if excluding the cost of
generating multiplication tables. It uses only one and two TBL instructions for multiplying
vectors of F16 and F256, respectively, which is roughly the same cost of the reduction
operations in the vector-vector multiplication. To figure out the exact cost of multiplying
longer vectors, we need to look into the cost of generating multiplication tables.
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static inline
uint8x16_t _gf256v_reduce_neon( uint8x16_t ab0, uint8x16_t ab1 ) {

uint8x16_t abh = vuzp2q_u8( ab0 , ab1 ); // UZP1
uint8x16_t abl = vuzp1q_u8( ab0 , ab1 ); // UZP2
return abl ^ vqtbl1q_u8( table_deg8to11 , abh & const_0x0f ) // EOR, TBL, AND

^ vqtbl1q_u8( table_deg12to15 , vshrq_n_u8( abh , 4 )); // EOR, TBL, USHR
}
static inline
uint8x16_t _gf256v_mul_neon( uint8x16_t a , uint8x16_t b ) {

uint8x16_t ab0 = vmull_p8( vget_low_u8(a) , vget_low_u8(b) ); // PMULL
uint8x16_t ab1 = vmull_high_p8( a , b ); // PMULL2
return _gf256v_reduce_neon( ab0 , ab1 );

}

Figure 4: F256 vector-vector multiplication in C code with Neon intrinsics [5].

Table 5: Average CPU cycles of 1024 tests for F256 vector-scalar multiplication.
Vector length 16 32 48 64 80

Cortex-A72 TBL (incl. generating multab) 33.90 42.62 50.02 71.33 81.31
PMULL (Figure 4) 19.25 35.49 76.33 79.15 97.78

Apple M1 TBL (incl. generating multab) 5.01 6.32 7.57 9.01 10.06
PMULL (Figure 4) 3.06 5.50 8.03 10.54 13.03

Generating multiplication tables. The vector-vector multiplication provides a simpler
way to generate multiplication tables in contrast to methods in Figure 2 and Figure 3. For
generating the multiplication table of a multiplicand v ∈ F16, we first duplicate v into a
vector v = (v, . . . , v) in a Neon register and multiply v by a vector c = (0, 1, . . . , 15) with
the vector-vector multiplication. The products are the multiplication table of v.

For v ∈ F256, we need v · c and v · (c ·x4) for the tables of multiplying low and high nibbles.
To reduce the common computation while computing the 2 tables, we first divide v into 2
4-bit nibbles (vl, vh) = (lownib(v), highnib(v)) and then compute vl · c and vh · c with
2 PMUL instructions. Then we have the first table v · c = vl · c + x4 · vh · c. To raise the
degree by 4, we use a shift-left operation and one TBL for reducing the coefficients with
degrees 8 to 11.

We compute the second table x4 · v · c depending on architectures. In general, we raise
the degree of the first table by 4 for the second table. However, since the latency of TBL
instruction is 3× 1 + 3 on Cortex-A72 [36, Page 30] (comparing to 2 on Apple M1 [29]),
there will be a serious data hazard if we wait for the result of the first table on Cortex-A72.
Thus, on Cortex-A72, we compute the second table x4 · v · c = x4 · vl · c + x8 · vh · c, where
we reuse the PMULL results and raise their degrees by 4 and 8. The raising degree by 8 is
the same as the reduce operation in Figure 4.

Table 5 compares TBL-based and PMULL-based multiplications by measuring the average
time for multiplying vectors of variable lengths by a scalar. For TBL multiplication, we
include the time for generating multiplication tables of the scalar. The difference between
adjacent lengths of vectors shows the actual cost of TBL multiplication, which is, for
instance, 6.32 − 5.01 = 1.31 for 16 multiplications on Apple M1. We can infer the cost
of generating multiplication tables is 5.01− 1.31 = 3.7, which is slightly larger than the
cost for one PMULL multiplication for 16 elements. Based on the results, we apply PMULL
multiplication for vectors of length ≤ 32 and TBL multiplication for longer vectors in our
Neon optimization.
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Table 6: Average CPU cycles of 1024 tests for F256 matrix-vector multiplication.
Matrix dimension 48 × 8 48 × 16 48 × 24 48 × 32 48 × 40

Cortex-A72
TBL 182 358 530 702 894
PMULL w/ lazy reduction 199 348 490 634 791

Apple M1
TBL 155 197 236 266 296
PMULL w/ lazy reduction 161 201 237 262 289

5.3 Matrix-Vector Multiplication
Considering c = A · b where A ∈ Fm×n

256 , b ∈ Fn
256 and c ∈ Fm

256, we perform the computation
as c =

∑n−1
i=0 Ai · bi where Ai ∈ Fm

256, which is n accumulation of the results of vector-scalar
multiplication Ai · bi. We have two options for the accumulation. First, we apply TBL
vector-scalar multiplication for computing Ai · bi. With this option, we omit the cost of
generating multiplication tables of n bis by assuming the multiplication tables are used
many times, e.g., during signing when bi are the vinegar variables. The other option
applies lazy reduction with PMULL multiplication, which accumulates the results of PMULL
and PMULL2 in Figure 4 and applies only one reduction after accumulating all intermediate
results.

We compare the main computations of the accumulation operations in the two methods
since the cost for generating a table of bi amortizes with growing m for TBL multiplication
and the cost for reduction operation amortizes with increasing n for PMULL multiplication.
TBL multiplication uses 6 instructions (2 TBL, 1 AND, 1 USHR, 2 EOR)2. On the other
hand, PMULL multiplication uses 4 instructions (1 PMULL, 1 PMULL2, and 2 EOR)3. PMULL
multiplication with lazy reduction uses fewer instructions for the main computation.

Table 6 compares the two methods for matrix-vector multiplication with various lengths of
vectors. We choose 48 as the height of the matrix since 48 is the most common length for
processing vectors in ov-Ip, where the size of oil variables is m = 44. The result shows
PMULL multiplication with lazy reduction outperforms TBL vector-scalar multiplication
when n is larger than 16 and 32 on Cortex-A72 and Apple M1 respectively.

5.4 Symmetric Cryptography
For symmetric primitives relating to shake256 function, i.e., Hash, Expandv, and Expandsk,
we call the OpenSSL library since it is generally available on most platforms.

We have two different Neon implementations for aes128ctr depending on the availability
of Arm AES instructions. On platforms supporting AES instructions, e.g., Apple M1,
we implement the standard and round reduced aes128ctr with AES instructions. On
platforms without AES instructions, e.g., Raspberry Pi4b, we port the bitsliced implemen-
tation for 32-bit platforms in [2], which runs four parallelized 32-bit bitsliced instances,
to the Neon instruction set, since Ard Biesheuvel [12] reported bitsliced implementations
outperform TBL-based implementations in the Linux kernel setting.

5.5 Results
We benchmark our Neon implementations of OV on Raspberry Pi4b and Apple’s 2020
MacBook Air, both supporting 64-bit Armv8-A instruction set. The Raspberry Pi4b equips
a Broadcom BCM2711 CPU (Arm Cortex-A72 CPU [36]) running at 1.8 GHz without
Arm AES instructions. The source code is compiled with Debian clang version version

2On Apple M1, we use EOR3 instruction from the SHA3 extension instead of 2 EOR.
3On Apple M1, PMULL+EOR costs the same as only PMULL [29].



20 Oil and Vinegar: Modern Parameters and Implementations

11.0.1-2. The Macbook has an Apple M1 CPU running at 3.2 GHz with Arm AES
instruction support. Its compiler is Apple clang version 14.0.0 (clang-1400.0.29.202).

Table 7 reports the results of Neon OV implementation and comparison with other PQC
signatures on the two Armv8-A platforms. Table 8 shows results with the 4-round AES
option of ExpandP. The results show that:

1) ov-Ip has the best signing time which is consistent with the results of AVX2
implementation (Table 3). However, ov-Ip outperforms ov-Is by a margin on
NEON while, on AVX2, ov-Ip leads ov-Is by < 10%. This is caused by the
mismatch between the sizes of registers and vectors. When processing line 9 and
10 of Sign() in Figure 1, the vectors are of legnth 44 or 45 bytes for ov-Ip. These
vectors are actually processed as 16× 3 bytes on NEON but 32× 2 bytes on AVX2
due to their 128-bit or 256-bit registers. It is clear that the AVX2 implementation
wastes more computations than NEON.

2) For verification, due to the fewer accumulators on F16 (see Subsection 3.2), ov-Is
outperforms ov-Ip although its larger size of public keys. On the other hand, the
verification time is proportional to the public key sizes for the pkc and pkc+skc
variants, where ExpandP dominates the computation time.

3) For pkc and pkc+skc variants, the symmetric primitives play an important role in
the performance. By comparing the performance impact of key compressed variants
to the classic variant, the impact is significantly smaller on the Apple M1 than
the Raspberry Pi4b, since the native AES (and SHA3) instructions on M1 result in
faster symmetric primitives than the bit-sliced ones on the Raspberry Pi4b.

4) The 4-round AES makes for an efficient ExpandP function such that the verification
time of pkc variants is of the same order as other PQC schemes on Apple M1 CPU.

Table 7: Benchmarking results of our Neon implementations. Numbers are median CPU
cycles of 10 000 executions.

Cortex-A72 Apple M1
Schemes KeyGen Sign Verify KeyGen Sign Verify

ov-Ip 11 172 204 245 095 142 868 1 793 119 55 289 49 719

ov-Ip-pkc 11 193 794 3 677 844 1 775 826 112 934
ov-Ip-pkc+skc 11 229 231 7 617 137 1 774 748 1 056 617

ov-Is 29 269 925 460 655 141 528 3 391 967 74 633 45 908

ov-Is-pkc 28 906 183 5 070 253 3 360 648 138 496
ov-Is-pkc+skc 29 467 684 16 413 501 3 393 812 2 089 131

Dilithium 2† [6] 269 724 649 230 272 824 71 061 224 125 69 792
Falcon-512 [38] — 1 044 600 59 900 — 459 200 22 700

ov-III 66 871 027 1 542 143 574 080 9 836 359 147 564 189 837

ov-III-pkc 66 554 826 17 161 246 9 803 637 461 896
ov-III-pkc+skc 64 147 364 42 794 977 9 751 198 6 353 401

ov-V 313 814 250 3 316 413 1 319 092 28 286 979 293 826 376 000

ov-V-pkc 305 700 907 39 337 795 26 743 866 1 011 331
ov-V-pkc+skc 312 729 427 107 305 680 26 663 940 15 830 169
† Security level II.
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Table 8: Benchmarking results of Neon implementations using 4-round AES for public-key
expansion. Numbers are median CPU cycles of 10 000 executions.

Cortex-A72 Apple M1
Schemes KeyGen Sign Verify KeyGen Sign Verify

ov-Ip-pkc 9 191 247 249 910 1 672 544 1 746 623 55 175 83 021ov-Ip-pkc+skc 9 473 513 5 627 393 1 748 646 1 026 701

ov-Is-pkc 25 698 880 448 188 2 266 233 3 324 331 74 503 97 325ov-Is-pkc+skc 28 324 760 13 333 557 3 349 000 2 045 042

ov-III-pkc 56 890 636 1 569 429 8 318 527 9 640 984 147 524 330 463ov-III-pkc+skc 56 815 652 34 533 235 9 645 510 6 221 280

ov-V-pkc 282 742 682 3 339 648 18 602 008 26 305 292 293 117 704 986ov-V-pkc+skc 291 438 637 86 727 909 26 298 657 15 522 513

6 Arm Cortex-M4 Implementation
This section covers our implementations of OV for the Arm Cortex-M4. We base our
implementation on the Rainbow implementation by Chou, Kannwischer, and Yang [19].
Subsection 6.1 introduces the features of the Arm Cortex-M4 which prove useful for OV
implementations. Subsection 6.2 describes the characteristic two finite field multiplication
which is used throughout the key generation, signing, and verification algorithms. Subsec-
tion 6.3 presents our implementations for solving linear equations which is essential for
signing. Subsection 6.4 covers signature verification and its memory-efficient implementa-
tion on the Cortex-M4. In Subsection 6.6, we present the resulting performance of our
implementations. Due to the stack limitations of available Cortex-M4 cores, we restrict
this section to the security level 1 parameter sets of OV, i.e., ov-Is and ov-Ip.

6.1 Armv7E-M Instruction Set and the Arm Cortex-M4
The Arm Cortex-M4 has been designated the primary microcontroller optimization target
for the NIST PQC standardization project and Cortex-M4 implementations of post-
quantum cryptography have received by far the most attention in the embedded cryptog-
raphy literature. The Arm Cortex-M4 implements the Armv7E-M instruction set which
provides several features proving useful for implementing binary finite field arithmetic:

Floating-point registers. Processors implementing the Armv7E-M architecture, can op-
tionally implement a single-precision floating-point unit. When available, the floating-
point unit comes with 32 32-bit floating-point register s0 to s31 that can be used
for performing floating-point arithmetic. While the arithmetic is usually not useful
for implementing cryptography, it is noteworthy that it is possible to move data
between floating-registers and general-purpose registers using vmov in a single cycle
per word. This is faster than spilling registers to memory which requires n + 1 cycles
for spilling n words.

Flexible second operand (barrel shifter). A distinguishing feature of the Arm architec-
ture is the flexible second operand which allows to shift or rotate the second operand
of most data-processing (but not multiplication instructions) instructions. For exam-
ple, eor Rd, Rn, Rm, lsl#7 shifts Rm to the left by 7 bits before performing the
eor operation with Rn. Using the barrel shifter on the Cortex-M4 does not increase
the latency or throughput of instructions.

Conditional execution. Conditional execution allows to execute up to four Thumb in-
structions within a IT block conditionally on a flag. The IT instruction is used to
encode the condition and the number of instructions in the “then”-branch and the
“else” branch. For example,



22 Oil and Vinegar: Modern Parameters and Implementations

Algorithm 3 F256 = F2[x]/⟨x8 + x4 + x3 + x + 1⟩ multiply-accumulate on 4 elements
packed into one register. Bold instructions are only needed once in case more elements are
multiplied by b. We unroll the loops in the actual code. If all inputs fit in registers, this
code requires 44 + 24n clock cycles to process n words (4n field elements).
Input: First multiplicand a (4 field elements packed into one register)
Input: Second multiplicand b (1 field element in the least significant byte)
Input: pconst = 0x1b (corresponding to x8 + x4 + x3 + x + 1); mconst = 0x01010101
Input/Output: accumulator c (4 field elements packed into one register)

1: vmov b′
0, b ▷ precomputation of b′ = b, bx, bx2, ..., bx7 (36 cycles)

2: for bit k=1,...,7 do
3: and t1, mconst, b, lsr#7 ▷ multiply by x and reduce
4: eor b, b, t1, lsl#7
5: mul t1, t1, pconst
6: eor b, t1, b, lsl#1
7: vmov b′

k, b

8: for bit k=0,...,7 do ▷ multiplication c = c + ab (32 cycles)
9: vmov t1, b′

k

10: and t0, mconst, a, lsr#k
11: mul t0, t1, t0
12: eor c, c, t0

tst r0, #1
itt ne
eorne r1, r1, r2
eorne r1, r1, r3
performs an eor of r1, r2, r3 and conditionally writes it to r1 if the least signifi-
cant bit of r0 is set. Note that each instruction within the IT block will take one
clock cycle irrespective of conditions which makes the use of conditional execution
suitable for constant-time code. The instruction sequence above will always take 4
clock cycles.

6.2 F256 and F16 Arithmetic
The basic core arithmetic operation within OV is finite field multiplication in the fields
F16 = F2[x]/⟨x4 + x + 1⟩ and F256 = F2[x]/⟨x8 + x4 + x3 + x + 1⟩. In particular, OV
requires a multiply-accumulate operation multiplying a vector of field elements by a
single field element. For F16, we make use of the bitsliced arithmetic proposed by Chou,
Kannwischer, and Yang [19] for (a tweaked version) of Rainbow. It bitslices the vector
while keeping the single field element in a single register and accessing individual bits. For
F256 = F2[x]/⟨x8 + x4 + x3 + x + 1⟩, we are not aware of any Cortex-M4 implementation
supporting the required vector by scalar multiply-accumulate operation. We, hence, write
our own. We present two implementations: One operating on four field elements packed
into one 32-bit register (i.e., byte-sliced) and one operating on 32 field elements bit-sliced
into eight registers. The former turns out to be superior.

Algorithm 3 presents our byte-sliced implementation of the multiplication of four field
elements packed into the register a by one field element in the least significant byte of the
register b and then adds the result to the four elements in c. It works by first pre-computing
b, bx, bx2, ..., bx7 and storing the result in eight floating-point registers. It then goes through
the bits of the four field elements stored in a, masks them out (line 10), multiplies the
individual bits by the corresponding pre-computed multiple of b, and then adds the result
to the accumulator. For a single input register, the instruction sequence takes 36+32=68



Beullens, Chen, Hung, Kannwischer, Peng, Shih, and Yang 23

Algorithm 4 F256 = F2[x]/⟨x8 + x4 + x3 + x + 1⟩ multiply-accumulate on 32 bitsliced
elements. As there are not enough registers available for all inputs in outputs, we split
the computation into the lower and upper bits of the product. We cache the other values
in floating-point registers (not shown here). Requires 162 clock cycles (2× 65 cycles for
arithmetic plus 32 cycles vmov) for 32 field multiplications excluding bitslicing.
Input: Bitsliced first multiplicand a0, ..., a7 (32 elements)
Input: Second multiplicand b (1 field element in the least significant byte)
Input/Output: accumulator c (4 field elements packed into one register)

1: tst b, #1
2: itttt ne
3: eorne c0, c0, a0
4: eorne c1, c1, a1
5: eorne c2, c2, a2
6: eorne c3, c3, a3
7: eor a0, a0, a7
8: eor a2, a2, a7
9: eor a3, a3, a7

10: tst b, #2
11: itttt ne
12: eorne c0, c0, a7
13: eorne c1, c1, a0
14: eorne c2, c2, a1
15: eorne c3, c3, a2
16: eor a7, a7, a6
17: eor a1, a1, a6
18: eor a2, a2, a6
19: tst b, #4
20: itttt ne
21: eorne c0, c0, a6
22: eorne c1, c1, a7
23: eorne c2, c2, a0

24: eorne c3, c3, a1
25: eor a6, a6, a5
26: eor a0, a0, a5
27: eor a1, a1, a5
28: tst b, #8
29: itttt ne
30: eorne c0, c0, a5
31: eorne c1, c1, a6
32: eorne c2, c2, a7
33: eorne c3, c3, a0
34: eor a5, a5, a4
35: eor a7, a7, a4
36: tst b, #16
37: itttt ne
38: eorne c0, c0, a4
39: eorne c1, c1, a5
40: eorne c2, c2, a6
41: eorne c3, c3, a7
42: eor a4, a4, a3
43: eor a6, a6, a3
44: tst b, #32
45: itttt ne
46: eorne c0, c0, a3

47: eorne c1, c1, a4
48: eorne c2, c2, a5
49: eorne c3, c3, a6
50: eor a3, a3, a2
51: eor a5, a5, a2
52: tst b, #64
53: itttt ne
54: eorne c0, c0, a2
55: eorne c1, c1, a3
56: eorne c2, c2, a4
57: eorne c3, c3, a5
58: eor a2, a2, a1
59: eor a4, a4, a1
60: tst b, #128
61: itttt ne
62: eorne c0, c0, a1t
63: eorne c1, c1, a2
64: eorne c2, c2, a3
65: eorne c3, c3, a4
66: //continue with 4

most significant
bits

instructions, i.e., 68 clock cycles (17 cycles/element). However, if more than four elements
have to be multiplied by b, one can easily extend the sequence to multiple inputs. In that
case, the instructions printed in boldface are only required once. We can, hence, implement
a multiply-accumulate for 8, 12, and 16 field elements in 92, 116, and 140 clock cycles
(11.5 cycles/element, 9.7 cycles/element, and 8.75 cycles/element). For larger vectors, the
inputs do not fit in registers anymore, however, one can still re-use the precomputation.
For example, multiplying 32 field elements takes 36 + 104 + 104 = 244 clock cycles (7.6
cycles/element).

Our second multiply-accumulate implementation is bitsliced implementation multiplying
a vector of 32 elements bitsliced into 8 registers a0, . . . , a7 by a single element in the
least significant byte of b. We first require an efficient transformation of byte-sliced field
elements into bit-sliced representation (and the inverse transformation). We implement a
straightforward adaptation of [19, Algorithm 7] requiring 128 clock cycles. Note that the
register pressure is very high (8 inputs and 8 outputs) in this case and we, hence, resort to
storing the result in floating-point registers. Algorithm 4 shows (part of) our bit-sliced
multiply-accumulate implementation. An essential difference to F16 is that the register
pressure is much higher as we require 17 registers to keep a, b, and c which is more than
available on the Cortex-M4. We work around this by keeping inputs and outputs in floating-
point registers and by sequentially computing the two halves (4 bits) of the output. Using
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this trick, we require 8 + 1 + 4 = 13 general-purpose registers during the computation. The
bitsliced computation proceeds by repeatedly multiplying a by x and, then conditionally
on the bits of b adding to the accumulator. The multiplication by x is implemented using
three eor instructions and implicit variable renaming implementing the shifts. After the
first four bits are computed, the results are stored in floating-point registers, and the
original inputs a0, . . . , a7, and the upper four bits of the accumulator c4, . . . , c7 are fetched
from floating-point registers. The second half then proceeds in the same way as the first
half. In the last multiplications by x, not all bits of the outputs are being used and
we, hence, eliminate all instructions computing unused bits. A full multiply-accumulate
operation with byte-sliced inputs and outputs requires 128 + 162 + 128 = 418 clock cycles
(13.1 cycles/element). Note that this is slower than calling byte-sliced implementation
for 32 field elements from Algorithm 3 twice (244 clock cycles ). Even when taking into
account that in all cases within OV, either a or c can be kept in bitsliced representation,
we require 128 + 162 = 290 clock cycles (9.1 cycles/element) for a multiply-accumulate
operation for 32 field elements. Therefore, the bitsliced implementation does not appear
promising.

6.3 Solving Linear Equations
As described in Subsection 3.1, there are two approaches for solving linear equations in
signing: matrix inversion followed by matrix-vector multiplication, and direct equation
solving using Gaussian elimination. While the number of multiplications clearly favours the
latter, we implement both for the Arm Cortex-M4 to compare their actual performance.

6.3.1 (Blocked) Matrix inversion

We implement matrix inversion both with and without the blocked matrix inversion
approach. We require the inversion of a 64× 64 matrix for the F16 parameter set and the
inversion of a 44×44 matrix for the F256 parameter set. Hence, when using blocked matrix
inversion, we need a 32 × 32 F16 matrix inversion and a 22 × 22 F256 matrix inversion.
For F16, our implementation is very close to the implementation of Chou, Kannwischer,
and Yang [19]. We adapt the dimensions to 64 and 32. For F256, we implement the same
algorithm and make use of the field multiplication from Subsection 6.2.

In addition, as a part of constant-time Gaussian elimination, we need to invert individual
F256 field elements. We make use of the constant-time extended Euclidean algorithm
as proposed by Bernstein and Yang [8]. For F256, our implementation consists of 230
instructions, i.e., 230 cycles. We believe that there is likely a better way to implement the
inversion as previous work on the bitsliced AES SBox which includes an F256 inversion
requires only 113 logic gates [14]. However, since the field inversion only accounts for
a negligible share of the matrix inversion cycles, we do not further investigate faster
approaches.

6.3.2 Directly solving the linear system of equations

In addition to the (blocked) inversion, we also implement the linear equations solving
using constant-time Gaussian elimination as shown in Algorithm 2 to study if the tricks
introduced in [47] are worthwhile on the Arm Cortex-M4. The implementation proceeds
similarly to the matrix inversion but requires much fewer multiplications.

6.3.3 Comparison

The upper part of Table 9 presents the results for the matrix inversion. We report the
cycles both with and without using blocked inversion. For the blocked inversion, we also
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Table 9: Cycles counts on the Arm Cortex-M4 for a matrix inversion with and without
blocked inversion as well as linear equation solving. Blocked inversion is significantly faster
(2.1× for F16 and 1.5× for F256) than non-blocked inversion. However, directly using
Gaussian elimination is even faster (1.1× for F16 and 2.5× for F256.)

(Blocked matrix inversion)
F16 F256

d cycles d cycles
64 — 1 499 802 44 — 1 645 998
64 blocked 720 904 44 blocked 1 086 057
32 — 189 289 22 — 207 427

Solving Lx = t− y
F16 F256

Using blocked inversion 742 956 1 194 424
Using Gaussian elimination 636 453 438 891

report the cycle counts for the smaller (half-sized) inversion. Blocked inversion provides a
2.1× speed-up for the F16 parameter set and a 1.5× speed-up for the F256 parameter set
over the non-blocked inversion. However, when looking at the results for solving the linear
system of equations (lower part of Table 9), we see that the blocked inversion is slower
than directly solving the equations using constant-time Gaussian elimination. The gap is
particularly large for F256 as F256 multiplications are particularly costly which makes it
more important to minimize the number of multiplications. We conclude that (blocked)
matrix inversion is not worthwhile for the Cortex-M4.

6.4 Verification
We implement the verification using the techniques for reducing the number of multiplica-
tions as described in Subsection 3.2. In addition, we implement the following target-specific
optimizations:

“Lazy sampling” for memory-efficient implementations. Note the lazy sampling tech-
nique from Subsection 3.2 has the additional benefit of not requiring the store the expanded
P(1)

i and P(2)
i matrices in RAM which is desirable for microcontroller implementations. To

keep the code simple, we always sample one contiguous block of the public key correspond-
ing to one variable si, and then loop over the remaining variables sj , i.e., we sample in the
outer loop of verification. If si = 0, then we don’t require this part of the public key at all.
We, hence, don’t have to sample it. This way, we require at most m× n field elements in
memory, keep the sampling overhead small, and the code remains easy to read.

T-table AES implementation for sampling the expanded public key. As some Cortex-M4
platforms contain a data cache [35], it is important to consider cache-timing attacks for
the implementation of the pseudo-random sampling using AES. However, in the case of
the public-key expansion, this is of no concern. We, hence, make use of the fast t-table
implementation by Schwabe and Stoffelen [46].

6.5 Symmetric cryptography
For implementing Hash, Expandv, and Expandsk, we use shake256 as implemented in
pqm4 [30] which integrates the Keccak permutation in Armv7-M assembly from the
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Table 10: Cortex-M4F cycle counts for our M4 implementations in comparison to the
fastest implementations of the winners of the NIST PQC competition and Rainbow. For
signing and verification we report the average of 10 000 executions.

speed (clock cycles)
variant KeyGen Sign Verify

ov-Ip (This work)
F256

classic 138 833k 2 482k 995k
pkc 175 020k 11 551k

(10 717k)pkc+skc 175 021k 88 757k

ov-Is (This work)
F16

classic 195 744k 2 374k 616k
pkc 203 321k 16 045k

(15 175k)pkc+skc 296 161k 113 446k

RainbowI
[19]

classic 98 431k 957k 239k
CZ 107 639k 12 903k

comp. 107 711k 56 643k
Dilithium 2 [1] 1 598k 4 083k 1 572k

Falcon-512 [45, 30] 163 994k 39 014k 473k
sphincs-sha256-128f-simple [30] 16 112k 400 443k 22 548k
sphincs-sha256-128s-simple [30] 1 031 755k 7 848 131k 7 711k

XKCP [20]. For implementing the sampling of the public key (ExpandP), we use the
t-table AES implementation by Schwabe and Stoffelen [46]. We also modify said imple-
mentation to implement a round-reduced AES with only 4 rounds. We present results
both for the 10-round and 4-round AES.

6.6 Results
In the following, we present the performance of the Cortex-M4 implementation described
above.

Target platform. We use the ST NUCLEO-L4R5ZI development board featuring a
STM32L4R5ZI ultra-low-power Arm Cortex-M4F core with 640 KB of RAM, and 2048
KB of flash memory. It runs at a frequency of up to 120 MHz. However, we clock the
device at 16 MHz allowing for zero wait-states when fetching instructions and data from
flash. For benchmarking, we use the pqm4 [30] benchmarking framework.

Keys exceeding RAM size. For the ov-Is (F16) parameter sets, the combined size of the
expanded secret key and the expanded public key is 743 KB which exceeds the RAM of our
target platform. To still be able to benchmark all primitives, we split up key generation
into secret key and public key computation. We then write the keys to flash memory
as was previously proposed by Chen and Chou for Classic McEliece [16]. This requires
minimal code modification while still being able to provide benchmarks for all parts of the
scheme. Higher security levels, however, are out of reach for running on the Cortex-M4.

Table 10 contains the performance benchmarks for Arm Cortex-M4. We present cycle counts
for all six variants of the level one parameter sets. Due to timing variations (depending
only on public data) in signing and verification, we perform 10 000 measurements and
report the average. Note that public key compression does not affect signing performance,
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Table 11: Cortex-M4F memory utilization (excluding keys) for our OV implementation in
comparison to the fastest implementations of the winners of the NIST PQC competition
and Rainbow.

memory consumption (bytes)
variant KeyGen Sign Verify

ov-Ip (This work)
F256

classic 15 744 5 268 2 548
pkc 142 312 6 592

(280 980)pkc+skc 380 248 243 204

ov-Is (This work)
F16

classic 613 056 5 468 1 024
pkc 350 072 5 248

(413 632)pkc+skc 416 636 354 216

RainbowI
[19]

classic 40 696 4 052 812
CZ 142 304 20 156

comp. 245 976 224 240
Dilithium 2 [1] 38 000 49 000 36 000

Falcon-512 [45, 30] 18 384 42 528 4 484
sphincs-sha256-128f-simple [30] 2 104 2 168 2 656
sphincs-sha256-128s-simple [30] 2 432 2 392 1 960

Table 12: For the Is parameter sets the keys are too large to fully fit in RAM, we, hence,
write them to flash during key generation. Cycles in Table 10 exclude the cycles required
for flashing. This table contains the cycles required for flashing as well as the total key
generation cycles.

key generation
w/o flashing (cc) flashing (cc) key generation

w/ flashing (cc)

ov-Is
F16

classic 195 744k 202 296k 398 040k
pkc 203 321k 110 744k 314 065k

pkc+skc 296 161k 18 287k 314 447k

while secret key compression does not affect verification performance. For the ov-Is, the
key generation cycles exclude the writing of keys to flash. We report the flashing cycles
separately in Table 12.

For verification with compressed public keys, there are two approaches available: Either
expanding the public key first and calling the classic verification, or inlining the expansion
as described in Subsection 6.4. The former approach has a much larger memory footprint,
but has slightly better speed.

Table 11 contains the memory utilization of our implementation excluding the key material.
The parameter sets using secret key compression are currently performing signing by first
expanding the secret key and then invoking the classic signing and, hence, require an
expanded secret key in additional memory. Key generation of ov-Is requires much more
memory than ov-Ip. This is due to having to cache the keys in RAM before writing them
to flash.

Table 13 presents the cycle counts when using a round-reduced AES (4 rounds instead of
14 rounds) for expanding the public key. It results in significantly faster verification (2.0×
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Table 13: Cortex-M4F cycle counts when using 4-round AES for expanding the public
key. This change primarily affects the verification procedure providing a 2.0× speed-up for
ov-Ip and a 2.1× speed-up for ov-Is.

speed (clock cycles)
variant KeyGen Sign Verify

ov-Ip (This work)
F256

pkc 169 280k 2 502k 5 804k
pkc+skc 169 281k 83 018k

ov-Is (This work)
F16

pkc 194 875k 2 390k 7 594k
pkc+skc 287 715k 105 004k

for ov-Ip and 2.1× for ov-Is).

7 FPGA Implementation
In this section, we present our field-programmable gate array (FPGA) design for OV
signatures and report the performance of the design on popular platforms. Since our
design supports multiple parameters and variants of OV, we adopt a processor design that
provides a custom instruction set dedicated for the computation of OV functions. This
way, we support the key generation, signing, and verification functions in Figure 1 with
pre-loaded firmware using the proposed instructions.

The FPGA presents a good platform to design, simulate, and test customized hardware
implementations performing specific algorithms. Although state-of-the-art FPGAs provide
a large number of programmable resources to the designers, in many practical deployments
programmers still need to adapt their design to particular FPGAs with limited resources.
In the paper, we test our design on two Xilinx Artix-7 platforms: Zynq-7000™ Z-7020 and
Artix-7 XC7A200T. We target Artix-7 as it is the hardware target platform recommended
by NIST [4] for the PQC standardization effort. Consequently, other PQC schemes have
also been implemented on Artix-7 allowing comparison to our implementation. Z-7020 is
the core chip of several popular development boards for educational purposes due to the
relatively low cost and the easy-to-use toolchain for testing and verification. It provides
an integrated SoC platform, including a processing system (PS) component consisting of
a Arm Cortex-A9 processor and a programmable logic (PL) component of the Artix-7
architecture. We use only the PL component in the work. On the other hand, XC7A200T is
the largest Artix-7 platform we are aware of, which provides abundant hardware resources
[53]. We have chosen this platform to validate that, even for the largest parameter of OV,
Artix-7 is capable to run the variants of compressed keys. Our design is fully parameterized.
Although we report our results with a setting tailoring for the Artix-7 platforms, it can be
easily adapted to other parameter sets and ported to other FPGAs.

Since we use a processor design for performing OV in hardware, our hardware modules can
be roughly divided into 3 categories according to their functionalities. These 3 categories
are (1) an instruction memory for storing firmware and a decoder for decoding user code
and sending control signals to other hardware modules for computation, (2) data memory
responsible for storing OV keys and data movement from/to the computation modules,
and (3) the modules for performing actual computations. We describe the topics relating
the 3 categories in Subsection 7.1, Subsection 7.2, and Subsection 7.3, respectively. We
report the implementation results of our design in Subsection 7.4.
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7.1 Instruction Set Architecture

We describe our customized instruction set for OV in this section. Since we adapt a
processor design, a complete OV implementation includes not only hardware modules
for actual computation but also an instruction set for controlling the hardware modules
and the firmware performing functionalities of signature systems with the customized
instructions. This design aims to simplify the hardware implementation of the OV scheme
and provide multiple functionalities in one design with the customized instruction set. The
instructions hence provide basic flow control and operations that are commonly used in
key generation, signing, and verification. In this way, we only need to focus on designing
modules for the critical operations in the scheme (e.g., Gaussian elimination, polynomial
evaluation) and utilize these modules repeatedly to carry out the computation. Besides,
code maintenance becomes much more manageable, as it is simple to insert or remove an
instruction without touching the existing instructions.

Instructions can be divided into two categories: (1) control instructions and (2) function
instructions. Control instructions are meant to control the program flow, while function
instructions perform the actual computation accounting for the vast majority of run time.
We provide 16 control registers r0-r15 and one program counter to control the program.
These control registers also serve as indices or counters of loops for a complex function
instruction. In our case, 16 registers are enough to construct nested loops and hold the
temporary values in key generation, signing, and verification.

Function instructions can be further divided into three parts: (1) core instructions, (2)
AES-related instructions, and (3) SHAKE-related instructions. Table 14 and Table 15 list
the function instructions and describe their functionalities in detail. Note that we have
dedicated hardware modules for the 3 parts of function instructions so each part operates
independently. Therefore, we can perform polynomial evaluations (core) and public key
sampling (AES) at the same time.

Function instructions have different numbers of inputs, resulting in different instruction
encodings. We optimize the instruction encoding and aim to use as few bits as possible.
In our implementation, we use 32 bits to encode the instructions. The reason for this
choice is that when we use the instruction addi(r2, r1, imm) to set the AES counter
to register r2, the imm bit field requires 18 bits to cover the range of AES counter values
to be able to sample the public key of the largest parameter set (151 404 AES blocks for
ov-V-pkc/ov-V-pkc+skc). Additionally, we use 16 registers, so the r1 and r2 bit-fields
require 4 bits each. Lastly, we use 6 bits for the opcode. Therefore, the total number of
bits needed is 18 + 4 + 4 + 6 = 32. We also support up to 1024 instructions, which is
enough for the instructions used in key generation, signing, and verification, and this is
achievable by using 1 BRAM36K.

By using the customized instructions, we perform key generation, signing, and verification
with their firmware on an FPGA. Algorithm 5 shows an example of the firmware performing
classic verification in ov-Ip. It uses only a few instructions to perform the verification
function. Instruction load_keys(ZERO, r0, r0) loads zeroes to the data register, and the
instruction eval does the polynomial evaluation in hardware. Here the eval instruction
takes an immediate value specifying the part of the public key. It will further be decoded
into a serial control signals for accessing key data and performing computations for the
particular part of the key in a matrix processing module described in Subsubsection 7.3.1.
Since we use only one processing module due to the area limit of our FPGAs, the next
eval instruction won’t be dispatched until its previous eval finishes. Finally, we shift the
data out and compare it with the hashed message using unload_check.
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Table 14: Function instructions: core instructions.
Instruction Description

store_keys(imm,r1,r2) Store values in data registers into the column of Macaulay ma-
trix (P(1), P(2), P(3), S). The address (imm, control_reg[r1],
control_reg[r2]) is translated into the represented column of
the Macaulay matrix.

load_keys(imm,r1,r2) Load data in address (imm, control_reg[r1], control_reg[r2])
of the Macaulay matrix to data registers.

mul_key_o(imm1, r1,
r2, X, r3, r4)

Multiply data in (imm1, control_reg[r1], control_reg[r2]) of
Macaulay matrix with control_reg[r3] row, control_reg[r4]
column of matrix O, and accumulate the results in data registers.

mul_key_sig(imm, r1,
r2)

Shift m · log2 |Fq |† bits from the AES buffer to the random reg-
isters in the systolic array. Then, multiply data in the random
registers with s[control_reg[r1]]·s[control_reg[r2]] (s is sig-
nature), and accumulate the results with values in data registers.

eval(imm) Perform polynomial evaluations on the Macaulay matrix. It calcu-
lates t in signing and verification.

unload_add_y() Shift data register results out, and perform (t − y) in signing.

calc_l(imm, X, r2) Calculate the column control_reg[r2] of L in signing.

store_l(r1) Shift data register results out and prepare for the column
control_reg[r1] of the matrix L in signing.

gauss_elim(imm) Perform Gaussian elimination to solve Lx = t − y in signing.
Program counter jumps to imm if it fails.

mul_o(X, r1, r2) Perform matrix-vector multiplication O · x in signing. Register r1,
r2 specify the submatrix of O that is being multiplied.

add_to_sig_v(r1) Shift data register results out, and perform addition v + Ox in
signing. Register r1 specifies the subvector that is being processed.

unload_check(r1) Shift data register results out and compare them with t in verifica-
tion. Register r1 specifies the parameter m in the OV scheme.

† log2 |Fq | is 4 in ov-Is, and 8 for other parameter sets.

7.2 Memory Management
Due to the large key size of OV, memory management becomes a crucial aspect for mapping
our design to an FPGA device and achieving high performance. The on-chip storage of
FPGAs is composed of multiple stripes of BRAMs, with each stripe containing multiple
BRAM36Ks, as depicted in Figure 5a. In our implementation, we use the Zynq-7000 and
XC7A200T FPGA boards which have 140 and 365 BRAMs, respectively. We implement
ov-Ip, ov-Is on the Zynq-7000 and ov-III, ov-V on XC7A200T. However, the key size for
certain parameter sets and variants still exceeds 70% of the available BRAMs leaving little
room for other logic requiring on-chip memory resources. As an example, in Table 16, the
ov-Ip and ov-Is in classic mode use 72% (101/140) and 106% (149/140) of the BRAMs,
respectively, while ov-III-pkc and ov-V-pkc+skc use 82% (300/365) and 105% (382/365)
of the BRAMs, respectively. This results in a more complex place-and-route as the limited
resources require careful allocation and management. Therefore, we have to allocate keys
so that computing units can fetch them from local BRAMs, to avoid complicating the
routing and ultimately making the design placeable and routable on FPGA.

Figure 5b shows the keys in the Macaulay matrix and how we map the key data into
BRAMs in an FPGA. In the top figure, we divide the key matrix into 3 submatrices
(denoted by a, b, and c) and store the 3 submatrices in 3 memory units of different colors in
the bottom left figure. This way, the 3 memory units are capable of providing one column
of the matrix to computation modules in the same cycle. The “key depth” of the memory
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Table 15: Function instructions: AES and SHAKE instructions.
Instruction Description

aes_init_key() Sample the seedpk and set it as the AES key.

aes_set_round(imm) Initialize the AES round to imm.

aes_set_ctr(X,r1,imm) Set the AES counter to imm + control_reg[r1].

aes_update_ctr(imm) AES encrypt the current plaintext, store the ciphertext to the AES
buffer and add imm to the current AES counter.

send() Shift m · log2 |Fq |† bits from the AES buffer to the data registers
in the systolic array.

shake_hash_sk(imm) Sample the seedsk to imm, generate 8× imm bytes digest and store
it to the SHA buffer.

shake_squeeze_sk(imm) Squeeze out 8×imm bytes digest and store it to the SHA buffer.

shake_hash_v() Perform Expandv(M ||salt||seedsk||ctr).

shake_hash_m() Perform Hash(M ||salt).

store_o(r1) Shift (n − m) · log2 |Fq |† bits from the SHAKE buffer and store it
to control_reg[r1] column of matrix O.

† log2 |Fq | is 4 in ov-Is, and 8 for other parameter sets.

(a) BRAMs on FPGA. (b) The memory layout on FPGA in ov-Ip.

units represents the width of the submatrices, which can be divided into several parts
P(1), P(2), S, and P(3) with width of v · (v + 1)/2, v ·m, v ·m, and m · (m + 1)/2, where
v = n−m ,respectively. Since the key depth is larger than the capacity of a typical BRAM,
each memory unit requires multiple BRAMs to store all required data in the bottom right
figure. In reality, the BRAMs for one memory unit may spread across the board. When
accessing a particular column of a matrix, we use a multiplexer to select the required data
from multiple BRAMs. To address the potential timing issues that can arise when working
with such multi-port memories, we introduce a delay of a few clock cycles, which allows
the selected data to fully propagate through the multiplexer and be properly read from
the BRAMs, thus ensuring correct and reliable output.

The key depth for different OV variants decides the number of BRAMs used in the design.
Table 16 summarizes the total key depth required for different variants and numbers of
BRAMs for different parameter sets. The total depth is composed of two different parts:
the storage for keys and temporary space during the computation. The number of BRAMs
required for different variants and parameter sets cannot exceed that on Zynq-7000 (140) or
XC7A200T (365) by too much. For the case that the number of BRAMs is slightly larger
than the capacity of a board (e.g., ov-V in pkc-skc for XC7A200T), we use LUTRAMs to
fill the gap. However, ov-III classic, ov-V classic, and ov-V-pkc are over the capacities
of our target FPGAs.
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Algorithm 5 The firmware performing verification in ov-Ip. P1, P2, and P3 are immediate
values that represent the Macaulay matrix P(1), P(2), and P(3), respectively, which are
being evaluated. The values of P1, P2, and P3 may vary depending on the variant of the
design. The ZERO also represents an immediate value, which corresponds to the BRAM
address storing zeros.

1: addi(r15, r0, 44) ▷ Initialize r15
2: addi(r14, r0, 68) ▷ Initialize r14
3: shake_hash_m() ▷ Perform Hash(M ||salt)
4: stall(24+3) ▷ Wait for the hash
5: load_keys(ZERO, r0, r0) ▷ Clean up the data register.
6: eval(P1) ▷ Perform {sTP(1)

i s}i∈m.
7: eval(P2) ▷ Perform {sTP(2)

i s}i∈m.
8: eval(P3) ▷ Perform {sTP(3)

i s}i∈m.
9: unload_check(r15) ▷ Shift out the result and check

10: stall(5) ▷ Wait for the check. Return Reject if it fails.
11: finish() ▷ Return Accept

Table 16: BRAM36K utilization in different OV variants. Note that v = n−m.
OV variants classic pkc pkc-skc

Keys stored in design P(1), P(2), P(3), S P(3), S P(3)

Key depth for key storage 2 · v · m + v · (v + 1)/2
+ m · (m + 1)/2 v · m + m · (m + 1)/2 m · (m + 1)/2

Additional depth for
temporary storage 0 v · (v + 1)/2 4 · v + v · (v + 1)/2

# BRAMs for ov-Ip 101 68 39

# BRAMs for ov-Is 149 101 56

# BRAMs for ov-III 441 300 165

# BRAMs for ov-V 1 066 724 382

Here, we describe the additional depth for temporary storage in detail:

• For OV classic, we store P(1), P(2), P(3), and S in the BRAM. During the computation,
we do not use additional temporary storage since we use key storage as temporary
storage to allow doing all the computation in-place. For example, in ExpandSK(),
we store P(2) first and re-use the same memory for S.

• For OV pkc and OV pkc-skc, we include v(v + 1)/2 depth for temporary storage
to store P(1). The reason is that during key generation, the computation involving
P(1) requires specific AES counter indices in ExpandP to obtain the corresponding
column of P(1) in the Macaulay matrix. For example, in ov-Ip, we need counters to
be set to 0, 1, and 2 to obtain the first column of P(1), and to 2, 3, 4, and 5 to obtain
the second column of P(1). This requirement complicates the hardware design as it
requires the addition of logic to calculate the mapping between counter indices and
column indices of P(1). Furthermore, additional buffers and shifters are needed to
transform the output of aes128ctr to the column format. To avoid this issue, we
pre-expand P(1) at the start of key generation and signing, and store it for later use.

• Finally, in OV pkc-skc, we observe that for the computation of {vTSi}i∈m in signing,
we can calculate few columns of Si on the fly and multiply them with vT without
preparing a whole Si matrix in the beginning. In addition, the calculation of columns
of Si can also be done using columns of P(2)

i , whose AES counter indices are easier
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Figure 6: The block diagram of the OV processor. At the top left corner, it shows a
microcontroller that fetches instructions and controls other modules. The AES and SHAKE
modules generate data for the systolic array in the top right, which reads inputs from
the top and left and writes outputs to the bottom and right. The outputs are stored
in memories or buffers located outside of the systolic array, which subsequently serve as
inputs for the systolic array.

to infer than P(1). In this way, we can allocate only additional 4v depth to hold the
columns of {Si}i∈m or {P(2)

i }i∈m.

7.3 OV Processor Design
In this section, we outline our hardware design for key generation, signing, and verification.
The block diagram of the hardware design is depicted in Figure 6. Its main components
comprise a systolic array in the right, a microcontroller in the top left, and AES and
SHAKE units in the bottom left. We detail the systolic array, the core component of the
design, in Subsubsection 7.3.1. After that, we describe the SHAKE-256 and AES-128 units
in Subsubsection 7.3.2. Lastly, we present the microcontroller and instruction decoders in
Subsubsection 7.3.3.

7.3.1 Systolic Array

Systolic arrays were introduced by Kung and Leiserson in 1978 [34], consisting of many
small processor units whose functions are specialized and which are connected in a specified
manner to achieve good performance of a pre-determined task to be done. Hochet, Quinton,
and Robert [25] proposed a systolic array approach to solve large dense linear systems of
equations. Later, Wang, Szefer, and Niederhagen [51] proposed the modular approach
on FPGAs to construct a systolic array solving linear systems of equations on F2. The
follow-up work by Wang, Szefer, and Niederhagen [52] further extended F2 to F2m to build
a key-generator for the Niederreiter cryptosystem using binary Goppa codes. It includes
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an additional inverter to perform systemization of matrices in F2m . Moreover, Chen, Chou,
Deshpande, Lahr, Niederhagen, Szefer, and Wang [18] focused on the early-abort function
of the systolic array when detecting a non-invertible matrix over F2, which is necessary
to accelerate the speed in the Classic McEliece cryptosystem. As the probability of the
non-invertible matrix over F16 and/or F256 occurring is much smaller than over F2, we
still adopt the approach of [51], and modify the processor units making our systolic array
suitable for the equation-solving in the OV scheme by extending them to F16 and F256,
and re-utilize the processor units to complete various expensive functions.

Previous design for Gaussian elimination. The authors in [51] presented a design to
compute the row echelon form of a matrix M in a module comb_SA with storage only
capable of a small portion of elements in M . In the solution, they split M into several
block columns, perform elimination on one block column with pivots in comb_SA, store the
row operations for the pivot column, and repeat the row operations on other columns.

The module comb_SA takes a row vector of size w from a column block of M as its input
outputs an eliminated row vector in every cycle. It contains w×w small processors. These
processors are organized as w connected row units. Each unit comprises w processors and
thus is capable of storing a row vector and performing row operations. A row unit takes
a row vector as input and outputs a processed row vector as well as the row operation
it has performed. An input vector of comb_SA may travel through all row units and be
output a eliminated vector after n cycles if it is not kept in any row unit. Each row unit
has a special processor (denoted as A) in the pivot position of the processed matrix M . It
is responsible for finding a non-zero pivot and sending commands of row operations to
other processors (denoted as B) in the same unit. When a row unit has stored a pivot row,
it simply eliminates all input vectors and outputs them. On the other hand, if the row
unit has not yet found a vector with non-zero pivot, it either stores an input vector with a
non-zero pivot element or passes the input to other row units.

As an additional note, it is known that for an n×n square matrix over Fq, the probabilty it
is invertible is 1

qn2 ·
∏n

j=1(qn−qj−1). The authors in [18] are dealing with the systemization
of a 768×3488 matrix over F2, and the probability it is "systemizable" (similar to "invertible"
but for matrices that are not square, as is defined in [18]) is only 0.2888. Meanwhile, we
are dealing with the matrices which are "systemizable" with probability 0.9336 over F16
and 0.9961 over F256. Since we are not facing the problem of frequent non-systemizable
matrices, we decide to omit the design with the early-abort function support and adopt
the design of [51] directly.

Longer row vectors. We reference the design in [51] as our base design and build other
functional units on it. [51] uses a systolic line architecture to solve the system of linear
equations. A systolic line is an architecture that allows signals to propagate through
rows in a single clock cycle. To ensure the width of the systolic line does not become the
critical path of the design, we implement a partially pipelined approach as illustrated in
Figure 7. As shown in the figure, we divide the entire systolic array of processors into
smaller, individual tiles. Each tile can be treated as a separate systolic line, allowing
signals within a tile to propagate quickly and efficiently from left to right in one clock cycle.
However, to avoid critical path issues, signals between tiles are pipelined. In conclusion, by
combining elements of both the systolic array and systolic line, we can achieve a reduction
in the number of clock cycles required for computation compared to a full systolic array,
while also achieving higher frequency compared to using only a systolic line.

Details of processors for Gaussian elimination over Fq. As shown in Figure 7, the sys-
tolic array is constructed using processors processor_AB, processor_B, processor_ABC,
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Figure 7: The Systolic Array performing Gaussian Elimination, SIMD multiplication,
and/or matrix-vector multiplication. The figure shows the reference design for ov-Ip.

processor_BC, processor_ABCD, and processor_BCD. The suffixes A, B, C, and D denote
the specific functionality. Functionality A and B are used in the Gaussian elimination
process. Processors with functionality A are allocated in the diagonal line of the systolic
array to find the pivot and triangularize the matrix. Functionality B, which receives signals
from the left, helps in eliminating rows or swapping rows. Functionality C provides Single
Instruction Multiple Data (SIMD) multiplication on columns of the Macaulay matrix.
And functionality D is responsible for providing matrix-vector multiplication used in Ox.
The processor with less functionality uses subsets of the signals of processor_ABCD or
processor_BCD, and therefore requires fewer resources. By utilizing this method, the
systolic array can reuse the multiplier and datapath, further reducing resource consumption.

Figure 8 shows the inputs and output signals of processor_ABCD and processor_BCD. We

Figure 8: Input and output signals of processor_ABCD and processor_BCD. The processors
multiplex inputs from the top and left, generate outputs to the bottom and right, and
update their register states. Both processors possess mul and add units, which perform
multiplication and addition in the fields F16 or F256. processor_ABCD has an additional
inv unit, which provides the inverse of the data. Both rand_r and data_r are registers
holding temporary data for the computation.
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Table 17: Truth table for processor AB/ABC/ABCD.
Input State Output

start_in finish_in data_in data_r data_r+ gauss_op_out data_out dataB_out

1 0 d x d · d−1 start 0 d−1

0 0 0 data_r data_r pass 0 x
0 0 d ̸= 0 0 d · d−1 swap 0 d−1

0 0 d ̸= 0 1 1 add 0 d
0 1 x x x swap data_r x

Table 18: Truth table for processor B/BC/BCD.
Input State Output

start_in finish_in data_in gauss_op_in data_r data_r+ data_out

1 0 d x x d · dataB_in 0
0 0 d pass data_r data_r d
0 0 d swap data_r d · dataB_in data_r
0 0 d add data_r data_r d + data_r · dataB_in
0 1 d swap data_r d data_r

start by focusing on the signals related to functionality A and B. Since [51] only implements
F2, we show the truth table for F16 and F256 in Table 17 and Table 18. We describe the
two tables in the following:

• start_in is high at the beginning of the computation to find the pivots and triangu-
larize the submatrix.

• For processors with functionality A, if data_in is 0 when start_in is high, dataB_out
will be 1, so the processors to the right of it will keep the data_in in data_r.

• For processor with functionality A, if data_in is not 0 and data_r is 0, it finds
the pivot. It then issues swap and sets dataB_out to the inverse of data_in. For
the processors to the right receiving operation swap, they will pass data_r out and
update r with d · dataB_in, which normalizes the row.

• For processor with functionality A, if data_in is not 0 and data_r is not 0, it
will start forward elimination. It issues add and set dataB_out to data_in. For
the processors to the right receiving operation add, they will do the elimination
d + data_r · dataB_in.

• For processor with functionality A, if data_in is 0, data_in is not pivot. It will
issue pass to make the processors to the right fall through data_in.

• finish_in is high when the computation is finished. Processors with functionality
A will issue swap to swap the result out.

We also follow the approach outlined in [51] to add additional control logic, allowing us to
perform Gaussian elimination by eliminating submatrices.

Field arithmetic. The modules of addition, multiplication, and inversion of elements in
F16 and F256 are often used in the design. The addition operation is simply implemented
using a XOR circuit. For the multiplication, we use schoolbook multiplication and reduce
the result using a combination of AND and XOR circuits. The synthesized result for F256
(AES field representation) requires 32 LUTs, which is only slightly more than the 29 LUTs
required for multiplication in the tower field representation as it was used by Rainbow [21].
For the F16 field representation, the number of required LUTs is the same as that of
the tower field representation, which is 7 LUTs. The logic delay in both addition and
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Table 19: op_in in systolic array.
op_in Instructions

0 Do nothing.

1 gauss_elim

2 store_keys

3 load_keys

4 eval, calc_l, mul_key_o

5 send, unload_add_y, unload_check, store_l

6,7 mul_key_sig

8 add_to_sig_v

9 mul_o

multiplication is typically negligible, and these operations are often combined to perform a
multiply-and-accumulate operation, as illustrated in Figure 8. The inversion operation is
implemented using a large look-up table. For F256, the LUT is 8-in-8-out and requires 40
LUTs in the synthesis, while for F16, it requires 2 LUTs.

Supporting other functionalites with the same array. Table 19 list the instructions
related to the systolic array and their corresponding op_in. Both functionality C and D
require an additional input op_in, indicating the operation it performs. Instructions with
the same data flow have the same op_in. The processors processor_A and processor_AB
do not use the op_in input, while processors with additional C or CD functionalities require
3-bit or 4-bit input, respectively. Encoding op_in in this manner allows us to save resources
on LUT.

Functionality C implements instructions operating on the column of the Macaulay ma-
trix. For example, the instructions eval, calc_l, and mul_key_o multiply keys with
multiplicands si · sj , vi, and element in O, respectively. We use dataB_in to pass the
multiplicands into processors. This allows us to reuse the datapath of dataB_in and
multipliers in the processor, further saving resources. For the cases when op_in is 5, 6,
or 7, these instructions also use dataB_in to shift in and out the data. For load_keys
and store_keys, they load and store keys between local BRAMs and data registers in the
systolic array.

Functionality D is activated when op_in is 8 or 9. It implementes instructions performing
matrix-vector multiplication and vector-vector addition and uses an additional input
dataA_in. We reuse only one column of multipliers here.

Lastly, we take ov-Ip in Figure 7 as an example. There are 16 · 3 = 48 processors with
functionality C to perform SIMD multiplication on 44 rows of the Macaulay matrix. We
can see that one column of multipliers, consisting of processor_ABCD and processor_BCD,
is used to perform matrix-vector multiplication. For other parameter sets, the systolic
arrays vary. In all parameters, there is one column of processors with functionality D. In
particular, ov-Is features 32 · 32 systolic processors, as 32 · 4 = 128, and it is designed
to seamlessly interface with AES-128. Consequently, ov-III and ov-V feature 16 × 16
systolic processors. Their differences are the number of columns with functionality C:
ov-Is has 64/32 = 2, ov-III has ⌈72/16⌉ = 5, and ov-V has 96/16 = 6.
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Table 20: Resource utilization of AES-128 and SHAKE256 (only run synthesized design).
LUTs FFs BRAM DSP

AES-128 (not pipelined) 2 351 2 371 0 0
AES-128 (pipelined 10-round) 8 366 5 161 0 0
AES-128 (pipelined 4-round) 4 324 3 625 0 0
SHAKE256 3 210 2 693 0 0

7.3.2 SHAKE-256 and AES-128

We integrate AES-128 and SHAKE-256 as separate modules outside the systolic array,
as shown in Figure 7. We utilize the AES implementation from [26], which is using a
fully-pipelined approach, and modify it to suit our needs. Since AES-128 is utilized only in
CTR mode for sampling segments of the public key, we only include the encryption module,
omitting the decryption module. We implement AES with two variations: (1) single-round
AES, and (2) fully-pipelined AES with 10 rounds or 4 rounds (for the round-reduced
implementation). The former requires 1 cycle per AES round. In total the 10-round AES
requires 12 cycles due to an additional 2-cycle overhead for setting the counter and buffering
the output. For the pipelined implementation one block of AES output is generated every
cycle. Because of the mismatch between the output size of AES-128 (128 bits) and the
column size of the Macaulay matrix (m · log2 |Fq|), we introduce a BRAM-based buffer to
store the AES output. We then adjust the output from the buffer and pad zeroes if needed
to ensure that the systolic array operates on the right column of the Macaulay matrix.
Since the read and write ports of BRAM are independent, AES-128 and the systolic array
can operate concurrently, resulting in a reduction of the number of cycles required.

For SHAKE-256, we adopt the mid-range hardware architecture by Keccak team [9] in
our design. Each Keccak permutation takes 24 cycles to finish. It stores the output of a
squeeze in the internal registers of the SHAKE-256 module. We also read out 1088-bit
from the SHAKE-256 module and store it in the BRAM-based buffer for the generation
of O. This buffer is the same as the one used in the AES-128 module to save BRAM
utilization. Therefore, AES and SHAKE instructions cannot execute simultaneously.

Table 20 shows the resource utilization of non-pipelined AES-128, pipelined AES-128
(10-round and 4-round), and SHAKE256. The non-pipelined AES-128 uses 2 351 LUTs.
The pipelined AES, on the other hand, requires 1.8× more LUTs for the 4-round version
and 3.6× more LUTs for the 10-round version compared to the non-pipelined version.
When considering both area and performance, the 4-round AES is the best option among
the AES designs. While the non-pipelined version requires fewer resources, it takes multiple
cycles to generate a block. On the other hand, the 4-round AES offers similar throughput
as the 10-round version, but with nearly half the resource usage.

7.3.3 The microcontroller and Two-Phase Decoding

The microcontroller, the top left component in Figure 6, is responsible for controlling the
program flow and sending control signals to other components. It fetches the instruction
from the instruction memory and decodes the instruction in its decoder. The decoder
separates control and function instructions, which is the initial phase of decoding. Depend-
ing on the type of instructions, the microcontroller either executes control instructions or
dispatches function instructions to other components.

The second phase of decoding takes place in the components implementing their specific
functionalities. For example, the decoding in the systolic array receives input signals
indicating the specific matrix operation to be performed.
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7.4 Results of Implementation
In this section, we evaluate the FPGA design by measuring the resource utilization and
cycle counts for key generation, signing, and verification. All of the designs are synthesized
and done implementation with Xilinx Vivado 2022.1 edition. The designs for ovIp and
ovIs are evaluated on Xilinx Zynq-7000 Z-7020 and ovIII and ovV are evaluated on
XC7A200T. We set the target frequency to 100MHz for both.

We report the resource utilization for OV with non-pipelined AES and the cycle counts in
full-round AES mode in Table 21. The utilization of LUTs and Slices of the variants with
the same security level are similar, except ov-Is and ov-V-pkc+skc. Their requirements
for key storage exceed the limit of the BRAM on their target boards, resulting in an
increase in LUTs. The utilization of BRAMs is close to what we expect from Table 16.
The utilization of DSP and FF resources is low.

We discuss the results in full-round AES mode first. The cycle count of signing in classic
mode, can be broken down into individual steps as follows to provide an approximation of
the cycle count:

Prepare v 66 for ov-V or 24 otherwise.
Prepare y (n − m + 1)(n − m)/2
Calculate t − y 5
Prepare L (n − m + 13)m (13 for flow controls)
Solve Lx = t − y Σ(⌈m/N⌉−1)

i=0 (m + 2N)(⌈m/N⌉ + 1 − i), where
N = 32 for ov-Is or N = 16 otherwise.

Calculate Ox (n − m)⌈m/N⌉
Calculate v + Ox 5

As an example of ov-Ip, where n = 112 and m = 44, the cycle count is 24 + 3 564 + 5 +
2 992 + 684 + 187 + 5 = 7 461 which is quite close ot our results.

The signing cycle count in pkc+skc mode is dominated by the ExpandSK() function,
specifically, the calculation of the Si = (P(1)

i + P(1)T
i )O + P(2)

i . This calculation takes
(n−m) ·m · (n−m + 15) cycles, where the 15 includes flow control and other operations
such as loading from and storing to temporary storage. In the case of ov-Ip-pkc+skc,
ExpandSK() takes 248 336 cycles. The remaining computation includes 7 515 cycles
for tasks such as Gaussian elimination and polynomial evaluation, and 189 618 cycles
for expanding P(1) and P(2) from seedpk. In the end, with savings from overlapping
these computations, it results in 248 336 + 7 515 + 175 032 − 352 621 = 78 262 cycles in
ov-Ip-pkc+skc.

The cycle count of verification in classic mode is approximately n × (n + 1)/2 cycles,
which is consistent with 6 328 for ov-Ip. On the other hand, the cycle count of verification
in pkc mode, is limited by the throughput of the ExpandP function. The AES module
of our low area design generates 128-bit every 12 cycles. To generate P(1) and P(2), It
takes (log2 |Fq| ·m · ((n + m)(n−m)/2)/128) · 12 cycles, which is 175 032 in ov-Ip-pkc.
The additional 192 411 − (175 032 + 6 435) = 10 944 cycles come from waiting for the
secret quadratic terms sT

i sj while evaluating key polynomials. Both key polynomials and
quadratic terms connect to the systolic array with the same signal path. This cost is
hidden in the case of non-pipelined AES.

We also report the cycle counts when using a 4-round AES for ExpandP. in Table 22. It
shows a reduction in cycles for verification in pkc mode and signing in skc. The saving for
verification matches our expectation, which can be estimated by the difference in rounds
multiplied by the number of calls to the AES module. It is (8 · 44 · ((112 + 44)(112 −
44)/2)/128) · 6 = 87 516 cycles in the case of ov-Ip. For signing in skc variants, the saving
is less significant because computing the Si in ExpandSK() dominates the cycle count.
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Table 21: The FPGA results with full-round AES for our low-area (no pipelined AES)
design.

Schemes Utilization Cycle Count Freq.
(MHz)Slices LUTs FFs BRAM DSP KeyGen Sign Verify

ov-Ip 12 145 33 221 24 097 108.5 2 3 540 971 7 515 6 435 93.5
ov-Ip-pkc 12 073 32 134 22 969 81 2 4 170 749 7 515 192 411 91.4
ov-Ip-pkc+skc 12 106 32 422 23 262 48 2 3 807 119 352 621 192 411 94.8
ov-Is 12 860 44 974 27 433 140 2 9 916 182 13 070 12 986 92.2
ov-Is-pkc 11 740 29 385 25 328 110 2 11 922 375 13 070 284 379 94.8
ov-Is-pkc+skc 11 681 28 947 24 444 66 2 11 072 933 843 885 284 379 90.8
ov-III-pkc 17 610 41 761 31 543 310.5 4 18 221 241 19 285 823 108 97.5
ov-III-pkc+skc 16 574 38 352 29 446 184.5 4 16 727 607 1 465 182 823 108 96.0
ov-V-pkc+skc 27 038 77 352 38 217 359 4 39 066 651 3 308 031 1 921 513 92.5

Table 22: Results of OV with 4-round AES for our low-area design. The resource
information is the same as that of full-round AES.

Schemes Cycle Count
KeyGen Sign Verify

ov-Ip 3 393 299 7 515 6 435
ov-Ip-pkc 4 077 245 7 515 99 615
ov-Ip-pkc+skc 3 768 047 313 549 99 615

ov-Is 9 746 742 13 070 12 986
ov-Is-pkc 11 814 183 13 070 176 859
ov-Is-pkc+skc 11 026 181 797 133 176 859

ov-III-pkc 17 832 117 19 285 436 036
ov-III-pkc+skc 16 556 211 1 293 786 436 036

ov-V-pkc+skc 38 671 211 2 909 727 1 015 155

Finally, we present the results for our high-performance design using a fully pipelined AES
in Table 23. We show only the results for pkc and pkc+skc as only those are majorly
affected in signing and verification by the faster AES. Comparing to the results using the
no-pipelined AES, verification improves by a factor of 3. As AES now generates one block
per cycle, it requires (8 · 44 · ((112 + 44)(112− 44)/2)/128) = 14 586 cycles to generate P(1)

and P(2). The overhead 61 499− (14 586 + 6 435) = 40 478 cycles comes again from waiting
for quadratic terms sT

i sj . For the signing in pkc+skc, the cycle count slightly improves
since the bottleneck is the computation of the Si. The cycles for 4-round and 10-round
AES are similar since both are pipelined, generating 128-bits per cycle.

The utilization of LUTs and FFs for pipelined AES increases as discussed in Subsubsec-
tion 7.3.2. For the case of ov-Ip-pkc+skc, the pipelined versions use 16% and 3% more
LUTs than the non-pipelined version for 10- and 4-round AES, respectively.
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Table 23: The performance results using pipelined AES.
AES Schemes Utilization Cycle Count Freq.

(MHz)rounds Slices LUTs FFs BRAM DSP KeyGen Sign Verify

10

ov-Ip-pkc 12 850 37 438 25 449 81 2 4 049 016 7 515 61 499 89.5
ov-Ip-pkc+skc 12 491 37 623 25 767 48 2 3 757 662 303 164 61 499 91.8
ov-Is-pkc 12 482 35 786 27 856 110 2 11 773 796 13 070 115 258 95.5
ov-Is-pkc+skc 12 259 34 208 26 974 66 2 11 008 802 779 754 115 258 90.3
ov-III-pkc 19 612 48 068 33 997 310.5 4 17 619 070 19 285 195 651 93.7
ov-III-pkc+skc 18 177 43 166 31 982 184.5 4 16 462 364 1 199 939 195 651 94.1
ov-V-pkc+skc 28 357 83 444 40 597 359 4 38 404 186 2 645 566 364 198 92.6

4

ov-Ip-pkc 12 164 33 220 23 913 81 2 4 048 566 7 515 61 121 94.8
ov-Ip-pkc+skc 11 911 33 363 24 233 48 2 3 757 428 302 930 61 121 94.5
ov-Is-pkc 11 958 31 227 26 327 110 2 11 772 350 13 070 113 914 94.2
ov-Is-pkc+skc 11 845 31 006 25 444 66 2 11 008 124 779 076 113 914 92.4
ov-III-pkc 18 323 43 408 32 439 310.5 4 17 617 420 19 285 194 115 96.3
ov-III-pkc+skc 17 084 39 003 30 516 184.5 4 16 461 578 1 199 153 194 115 96.9
ov-V-pkc+skc 27 753 79 918 39 206 359 4 38 403 352 2 644 732 362 626 95.7
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