
Introduction to the Cortex-M4

Matthias J. Kannwischer and Bo-Yin Yang
Academia Sinica, Taipei, Taiwan
matthias@kannwischer.eu

08 June 2023, Summer School on real-world crypto and privacy,
Vodice, Croatia

mailto:matthias@kannwischer.eu

Institute of Information Science, Academia Sinica

Recap: why program in assembly

• Compilers are useful, but not that ‘good’
• Assembly gives precise control

• Can be critical for a secure implementation!
• Constant-time
• Correct order of instructions with masking

• Can be critical for a fast implementation!

08 June 2023 1/32

Institute of Information Science, Academia Sinica

Recap: why program in assembly

• Compilers are useful, but not that ‘good’
• Assembly gives precise control

• Can be critical for a secure implementation!
• Constant-time
• Correct order of instructions with masking

• Can be critical for a fast implementation!

08 June 2023 1/32

Institute of Information Science, Academia Sinica

Recap: why program in assembly

• Compilers are useful, but not that ‘good’
• Assembly gives precise control

• Can be critical for a secure implementation!
• Constant-time
• Correct order of instructions with masking

• Can be critical for a fast implementation!

08 June 2023 1/32

Institute of Information Science, Academia Sinica

Recap: why program in assembly

• Compilers are useful, but not that ‘good’
• Assembly gives precise control

• Can be critical for a secure implementation!
• Constant-time
• Correct order of instructions with masking

• Can be critical for a fast implementation!

08 June 2023 1/32

Institute of Information Science, Academia Sinica

Our platform: Arm

• Arm company designs CPUs, does not build them
• Market leader for mobile devices, embedded systems

• Armv7E-M architecture
• Cortex-M4 implements this architecture
• Released in 2010, widely deployed

• STM32F407VGT6
• Cortex-M4 + peripherals

• 1024 KB flash
• 192 KB SRAM
• 168 MHz CPU

08 June 2023 2/32

Institute of Information Science, Academia Sinica

Our platform: Arm

• Arm company designs CPUs, does not build them
• Market leader for mobile devices, embedded systems

• Armv7E-M architecture
• Cortex-M4 implements this architecture
• Released in 2010, widely deployed

• STM32F407VGT6
• Cortex-M4 + peripherals

• 1024 KB flash
• 192 KB SRAM
• 168 MHz CPU

08 June 2023 2/32

Institute of Information Science, Academia Sinica

Pipeline

• Cortex-M4 has pipelined execution
• 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch Decode Execute

Instruction 2 Fetch Decode Execute

Instruction 3 Fetch Decode Execute

• Branching breaks this
• But remedied by branch prediction + speculative execution

• Execute happens in one cycle: dependencies do not cause stalls

08 June 2023 3/32

Institute of Information Science, Academia Sinica

Pipeline

• Cortex-M4 has pipelined execution
• 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch Decode Execute

Instruction 2 Fetch Decode Execute

Instruction 3 Fetch Decode Execute

• Branching breaks this
• But remedied by branch prediction + speculative execution

• Execute happens in one cycle: dependencies do not cause stalls

08 June 2023 3/32

Institute of Information Science, Academia Sinica

Pipeline

• Cortex-M4 has pipelined execution
• 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch Decode Execute

Instruction 2 Fetch Decode Execute

Instruction 3 Fetch Decode Execute

• Branching breaks this
• But remedied by branch prediction + speculative execution

• Execute happens in one cycle: dependencies do not cause stalls

08 June 2023 3/32

Institute of Information Science, Academia Sinica

Pipeline

• Cortex-M4 has pipelined execution
• 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch Decode Execute

Instruction 2 Fetch Decode Execute

Instruction 3 Fetch Decode Execute

• Branching breaks this
• But remedied by branch prediction + speculative execution

• Execute happens in one cycle: dependencies do not cause stalls

08 June 2023 3/32

Institute of Information Science, Academia Sinica

Registers

• 16 registers: r0–r15
• Some special registers

• r13: sp (stack pointer)
• r14: lr (link register)
• r15: pc (program counter)

• r0–r12 are general purpose and can be freely used
• r14 can also be freely used after being saved to the stack

08 June 2023 4/32

Institute of Information Science, Academia Sinica

Registers

• 16 registers: r0–r15
• Some special registers

• r13: sp (stack pointer)
• r14: lr (link register)
• r15: pc (program counter)

• r0–r12 are general purpose and can be freely used
• r14 can also be freely used after being saved to the stack

08 June 2023 4/32

Institute of Information Science, Academia Sinica

Registers

• 16 registers: r0–r15
• Some special registers

• r13: sp (stack pointer)
• r14: lr (link register)
• r15: pc (program counter)

• r0–r12 are general purpose and can be freely used
• r14 can also be freely used after being saved to the stack

08 June 2023 4/32

Institute of Information Science, Academia Sinica

Instructions

• Format: Instr Rd, Rn(, Rm)

• mov r0, r1 (equivalent to uint32_t r0 = r1;)
• mov r0, #18

• Sometimes, a constant is too large to fit in an instruction
• Put constant in memory or construct it
• movw for bottom 16 bits, movt for top 16 bits

• add, but also adds, adc, and adcs
• By default, flags never get updated!
• Many instructions have a variant that sets flags by appending s

• Bitwise operations: eor, and, orr, mvn, orn, bic

• Shifts/rotates: ror, lsl, lsr, asr

• All have variants with registers as operands and with a constant (‘immediate’)

08 June 2023 5/32

Institute of Information Science, Academia Sinica

Instructions

• Format: Instr Rd, Rn(, Rm)

• mov r0, r1 (equivalent to uint32_t r0 = r1;)
• mov r0, #18

• Sometimes, a constant is too large to fit in an instruction
• Put constant in memory or construct it
• movw for bottom 16 bits, movt for top 16 bits

• add, but also adds, adc, and adcs
• By default, flags never get updated!
• Many instructions have a variant that sets flags by appending s

• Bitwise operations: eor, and, orr, mvn, orn, bic

• Shifts/rotates: ror, lsl, lsr, asr

• All have variants with registers as operands and with a constant (‘immediate’)

08 June 2023 5/32

Institute of Information Science, Academia Sinica

Instructions

• Format: Instr Rd, Rn(, Rm)

• mov r0, r1 (equivalent to uint32_t r0 = r1;)
• mov r0, #18

• Sometimes, a constant is too large to fit in an instruction
• Put constant in memory or construct it
• movw for bottom 16 bits, movt for top 16 bits

• add, but also adds, adc, and adcs
• By default, flags never get updated!
• Many instructions have a variant that sets flags by appending s

• Bitwise operations: eor, and, orr, mvn, orn, bic

• Shifts/rotates: ror, lsl, lsr, asr

• All have variants with registers as operands and with a constant (‘immediate’)

08 June 2023 5/32

Institute of Information Science, Academia Sinica

Instructions

• Format: Instr Rd, Rn(, Rm)

• mov r0, r1 (equivalent to uint32_t r0 = r1;)
• mov r0, #18

• Sometimes, a constant is too large to fit in an instruction
• Put constant in memory or construct it
• movw for bottom 16 bits, movt for top 16 bits

• add, but also adds, adc, and adcs
• By default, flags never get updated!
• Many instructions have a variant that sets flags by appending s

• Bitwise operations: eor, and, orr, mvn, orn, bic

• Shifts/rotates: ror, lsl, lsr, asr

• All have variants with registers as operands and with a constant (‘immediate’)

08 June 2023 5/32

Institute of Information Science, Academia Sinica

Instructions

• Format: Instr Rd, Rn(, Rm)

• mov r0, r1 (equivalent to uint32_t r0 = r1;)
• mov r0, #18

• Sometimes, a constant is too large to fit in an instruction
• Put constant in memory or construct it
• movw for bottom 16 bits, movt for top 16 bits

• add, but also adds, adc, and adcs
• By default, flags never get updated!
• Many instructions have a variant that sets flags by appending s

• Bitwise operations: eor, and, orr, mvn, orn, bic

• Shifts/rotates: ror, lsl, lsr, asr

• All have variants with registers as operands and with a constant (‘immediate’)

08 June 2023 5/32

Institute of Information Science, Academia Sinica

Instructions

• Format: Instr Rd, Rn(, Rm)

• mov r0, r1 (equivalent to uint32_t r0 = r1;)
• mov r0, #18

• Sometimes, a constant is too large to fit in an instruction
• Put constant in memory or construct it
• movw for bottom 16 bits, movt for top 16 bits

• add, but also adds, adc, and adcs
• By default, flags never get updated!
• Many instructions have a variant that sets flags by appending s

• Bitwise operations: eor, and, orr, mvn, orn, bic

• Shifts/rotates: ror, lsl, lsr, asr

• All have variants with registers as operands and with a constant (‘immediate’)

08 June 2023 5/32

Institute of Information Science, Academia Sinica

Instructions

• Format: Instr Rd, Rn(, Rm)

• mov r0, r1 (equivalent to uint32_t r0 = r1;)
• mov r0, #18

• Sometimes, a constant is too large to fit in an instruction
• Put constant in memory or construct it
• movw for bottom 16 bits, movt for top 16 bits

• add, but also adds, adc, and adcs
• By default, flags never get updated!
• Many instructions have a variant that sets flags by appending s

• Bitwise operations: eor, and, orr, mvn, orn, bic

• Shifts/rotates: ror, lsl, lsr, asr

• All have variants with registers as operands and with a constant (‘immediate’)

08 June 2023 5/32

Institute of Information Science, Academia Sinica

Instructions

• Format: Instr Rd, Rn(, Rm)

• mov r0, r1 (equivalent to uint32_t r0 = r1;)
• mov r0, #18

• Sometimes, a constant is too large to fit in an instruction
• Put constant in memory or construct it
• movw for bottom 16 bits, movt for top 16 bits

• add, but also adds, adc, and adcs
• By default, flags never get updated!
• Many instructions have a variant that sets flags by appending s

• Bitwise operations: eor, and, orr, mvn, orn, bic

• Shifts/rotates: ror, lsl, lsr, asr

• All have variants with registers as operands and with a constant (‘immediate’)

08 June 2023 5/32

Institute of Information Science, Academia Sinica

Instructions

• Format: Instr Rd, Rn(, Rm)

• mov r0, r1 (equivalent to uint32_t r0 = r1;)
• mov r0, #18

• Sometimes, a constant is too large to fit in an instruction
• Put constant in memory or construct it
• movw for bottom 16 bits, movt for top 16 bits

• add, but also adds, adc, and adcs
• By default, flags never get updated!
• Many instructions have a variant that sets flags by appending s

• Bitwise operations: eor, and, orr, mvn, orn, bic

• Shifts/rotates: ror, lsl, lsr, asr

• All have variants with registers as operands and with a constant (‘immediate’)

08 June 2023 5/32

Institute of Information Science, Academia Sinica

Combined barrel shifter

• Distinctive feature of ARM architecture
• Every Rm operand goes through barrel shifter
• Possible to do this: eor r0, r1, r2, lsl #2

• Two instructions for the price of one, only costs 1 cycle

• Optimized code uses this all the time
• Possible with most arithmetic instructions

08 June 2023 6/32

Institute of Information Science, Academia Sinica

Combined barrel shifter

• Distinctive feature of ARM architecture
• Every Rm operand goes through barrel shifter
• Possible to do this: eor r0, r1, r2, lsl #2

• Two instructions for the price of one, only costs 1 cycle

• Optimized code uses this all the time
• Possible with most arithmetic instructions

08 June 2023 6/32

Institute of Information Science, Academia Sinica

Combined barrel shifter

• Distinctive feature of ARM architecture
• Every Rm operand goes through barrel shifter
• Possible to do this: eor r0, r1, r2, lsl #2

• Two instructions for the price of one, only costs 1 cycle

• Optimized code uses this all the time
• Possible with most arithmetic instructions

08 June 2023 6/32

Institute of Information Science, Academia Sinica

Barrel shifter example

Example:

mov r0 , #42
mov r1 , #37
ror r1 , r1 , #1
orr r2 , r0 , r 1
l s l r2 , r2 , #1
eor r0 , r2

More efficient:

mov r0 , #42
mov r1 , #37
orr r2 , r0 , r1 , ror #1
eor r0 , r0 , r2 , l s l #1

• Barrel shifter does not update Rm, i.e. r1 and r2!
• A very common use is as a mask with Rm, asr #31!

08 June 2023 7/32

Institute of Information Science, Academia Sinica

Barrel shifter example

Example:

mov r0 , #42
mov r1 , #37
ror r1 , r1 , #1
orr r2 , r0 , r 1
l s l r2 , r2 , #1
eor r0 , r2

More efficient:

mov r0 , #42
mov r1 , #37
orr r2 , r0 , r1 , ror #1
eor r0 , r0 , r2 , l s l #1

• Barrel shifter does not update Rm, i.e. r1 and r2!
• A very common use is as a mask with Rm, asr #31!

08 June 2023 7/32

Institute of Information Science, Academia Sinica

Barrel shifter example

Example:

mov r0 , #42
mov r1 , #37
ror r1 , r1 , #1
orr r2 , r0 , r 1
l s l r2 , r2 , #1
eor r0 , r2

More efficient:

mov r0 , #42
mov r1 , #37
orr r2 , r0 , r1 , ror #1
eor r0 , r0 , r2 , l s l #1

• Barrel shifter does not update Rm, i.e. r1 and r2!
• A very common use is as a mask with Rm, asr #31!

08 June 2023 7/32

Institute of Information Science, Academia Sinica

Branching and labels

• After every 32-bit instruction, pc += 4

• By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

• While programming, addresses of instructions are not known
• Solution: define a label and use b to branch to labels
• Assembler and linker later resolve the address ‘

mov r0 , #42
b somelabel
mov r0 , #37
somelabel :
. . .

08 June 2023 8/32

Institute of Information Science, Academia Sinica

Branching and labels

• After every 32-bit instruction, pc += 4

• By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

• While programming, addresses of instructions are not known
• Solution: define a label and use b to branch to labels
• Assembler and linker later resolve the address ‘

mov r0 , #42
b somelabel
mov r0 , #37
somelabel :
. . .

08 June 2023 8/32

Institute of Information Science, Academia Sinica

Branching and labels

• After every 32-bit instruction, pc += 4

• By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

• While programming, addresses of instructions are not known
• Solution: define a label and use b to branch to labels
• Assembler and linker later resolve the address ‘

mov r0 , #42
b somelabel
mov r0 , #37
somelabel :
. . .

08 June 2023 8/32

Institute of Information Science, Academia Sinica

Branching and labels

• After every 32-bit instruction, pc += 4

• By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

• While programming, addresses of instructions are not known
• Solution: define a label and use b to branch to labels
• Assembler and linker later resolve the address ‘

mov r0 , #42
b somelabel
mov r0 , #37
somelabel :
. . .

08 June 2023 8/32

Institute of Information Science, Academia Sinica

Branching and labels

• After every 32-bit instruction, pc += 4

• By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

• While programming, addresses of instructions are not known
• Solution: define a label and use b to branch to labels
• Assembler and linker later resolve the address ‘

mov r0 , #42
b somelabel
mov r0 , #37
somelabel :
. . .

08 June 2023 8/32

Institute of Information Science, Academia Sinica

Conditional branches

• How to do a for/while loop?
• Need to do a test and branch depending on the outcome

• cmp r0, r1 (r1 can also be shifted/rotated!)
• cmp r0, #5

• Really: subtract, set status flags, discard result
• Instead of b, use a conditional branch

• beq label (r0 == r1)
• bne label (r0 != r1)
• bhi label (r0 > r1, unsigned)
• bls label (r0 <= r1, unsigned)
• bgt label (r0 > r1, signed)
• bge label (r0 >= r1, signed)
• And many more

08 June 2023 9/32

Institute of Information Science, Academia Sinica

Conditional branches

• How to do a for/while loop?
• Need to do a test and branch depending on the outcome

• cmp r0, r1 (r1 can also be shifted/rotated!)
• cmp r0, #5

• Really: subtract, set status flags, discard result
• Instead of b, use a conditional branch

• beq label (r0 == r1)
• bne label (r0 != r1)
• bhi label (r0 > r1, unsigned)
• bls label (r0 <= r1, unsigned)
• bgt label (r0 > r1, signed)
• bge label (r0 >= r1, signed)
• And many more

08 June 2023 9/32

Institute of Information Science, Academia Sinica

Conditional branches

• How to do a for/while loop?
• Need to do a test and branch depending on the outcome

• cmp r0, r1 (r1 can also be shifted/rotated!)
• cmp r0, #5

• Really: subtract, set status flags, discard result
• Instead of b, use a conditional branch

• beq label (r0 == r1)
• bne label (r0 != r1)
• bhi label (r0 > r1, unsigned)
• bls label (r0 <= r1, unsigned)
• bgt label (r0 > r1, signed)
• bge label (r0 >= r1, signed)
• And many more

08 June 2023 9/32

Institute of Information Science, Academia Sinica

Conditional branches

• How to do a for/while loop?
• Need to do a test and branch depending on the outcome

• cmp r0, r1 (r1 can also be shifted/rotated!)
• cmp r0, #5

• Really: subtract, set status flags, discard result
• Instead of b, use a conditional branch

• beq label (r0 == r1)
• bne label (r0 != r1)
• bhi label (r0 > r1, unsigned)
• bls label (r0 <= r1, unsigned)
• bgt label (r0 > r1, signed)
• bge label (r0 >= r1, signed)
• And many more

08 June 2023 9/32

Institute of Information Science, Academia Sinica

Conditional branches

• How to do a for/while loop?
• Need to do a test and branch depending on the outcome

• cmp r0, r1 (r1 can also be shifted/rotated!)
• cmp r0, #5

• Really: subtract, set status flags, discard result
• Instead of b, use a conditional branch

• beq label (r0 == r1)
• bne label (r0 != r1)
• bhi label (r0 > r1, unsigned)
• bls label (r0 <= r1, unsigned)
• bgt label (r0 > r1, signed)
• bge label (r0 >= r1, signed)
• And many more

08 June 2023 9/32

Institute of Information Science, Academia Sinica

Conditional branches

• How to do a for/while loop?
• Need to do a test and branch depending on the outcome

• cmp r0, r1 (r1 can also be shifted/rotated!)
• cmp r0, #5

• Really: subtract, set status flags, discard result
• Instead of b, use a conditional branch

• beq label (r0 == r1)
• bne label (r0 != r1)
• bhi label (r0 > r1, unsigned)
• bls label (r0 <= r1, unsigned)
• bgt label (r0 > r1, signed)
• bge label (r0 >= r1, signed)
• And many more

08 June 2023 9/32

Institute of Information Science, Academia Sinica

Conditional branches

• How to do a for/while loop?
• Need to do a test and branch depending on the outcome

• cmp r0, r1 (r1 can also be shifted/rotated!)
• cmp r0, #5

• Really: subtract, set status flags, discard result
• Instead of b, use a conditional branch

• beq label (r0 == r1)
• bne label (r0 != r1)
• bhi label (r0 > r1, unsigned)
• bls label (r0 <= r1, unsigned)
• bgt label (r0 > r1, signed)
• bge label (r0 >= r1, signed)
• And many more

08 June 2023 9/32

Institute of Information Science, Academia Sinica

Conditional branches (example)

In C:

u in t32_t a , b = 100 ;

for (a = 0 ; a <= 50 ; a ++) {
b += a ;

}

In asm:

mov r0 , #0 // a
mov r1 , #100 // b

loop :
add r1 , r0 // b += a

add r0 , #1 // a++
cmp r0 , #50 // compare a and 50
bls loop // loop i f <=

08 June 2023 10/32

Institute of Information Science, Academia Sinica

Conditional Execution

• Instructions can be executed conditionally when they are part of an IT block
• For Example,

cmp r0, #42
ITE eq
addeq r1, r1, r2
subne r1, r1, r2

• Will add r2 to r1 if r0 is equal to 42; otherwise it will subtract r2 from r1

08 June 2023 11/32

Institute of Information Science, Academia Sinica

Conditional Execution

• Instructions can be executed conditionally when they are part of an IT block
• For Example,

cmp r0, #42
ITE eq
addeq r1, r1, r2
subne r1, r1, r2

• Will add r2 to r1 if r0 is equal to 42; otherwise it will subtract r2 from r1

08 June 2023 11/32

Institute of Information Science, Academia Sinica

Conditional Execution (2)

• All instructions will be executed; if condition is not satisfied the result will be
discarded

• Instructions for which the condition is not satisfied act as a nop
• This implies that secret conditions result in constant-time as long as there is no branch
instruction inside of the IT block

• Block can consist of up to four instructions
• First instruction always needs to be in the then (T) branch; for the rest it arbitrary

• Examples: IT, ITT, ITTTT, ITETE
• The then condition needs to match the condition in the IT instruction
• the else (E) conditions need to be the opposite

08 June 2023 12/32

Institute of Information Science, Academia Sinica

Conditional Execution (2)

• All instructions will be executed; if condition is not satisfied the result will be
discarded

• Instructions for which the condition is not satisfied act as a nop
• This implies that secret conditions result in constant-time as long as there is no branch
instruction inside of the IT block

• Block can consist of up to four instructions
• First instruction always needs to be in the then (T) branch; for the rest it arbitrary

• Examples: IT, ITT, ITTTT, ITETE
• The then condition needs to match the condition in the IT instruction
• the else (E) conditions need to be the opposite

08 June 2023 12/32

Institute of Information Science, Academia Sinica

The stack

• Often data does not fit in registers
• Solution: push intermediate values to the stack (changes sp)
• push {r0, r1}

• Can now re-use r0 and r1

• Later retrieve values in any register you like: pop {r0, r2}

• Can load from the stack without moving sp

• Not popping all pushed values will crash the program

08 June 2023 13/32

Institute of Information Science, Academia Sinica

The stack

• Often data does not fit in registers
• Solution: push intermediate values to the stack (changes sp)
• push {r0, r1}

• Can now re-use r0 and r1

• Later retrieve values in any register you like: pop {r0, r2}

• Can load from the stack without moving sp

• Not popping all pushed values will crash the program

08 June 2023 13/32

Institute of Information Science, Academia Sinica

The stack

• Often data does not fit in registers
• Solution: push intermediate values to the stack (changes sp)
• push {r0, r1}

• Can now re-use r0 and r1

• Later retrieve values in any register you like: pop {r0, r2}

• Can load from the stack without moving sp

• Not popping all pushed values will crash the program

08 June 2023 13/32

Institute of Information Science, Academia Sinica

The stack

• Often data does not fit in registers
• Solution: push intermediate values to the stack (changes sp)
• push {r0, r1}

• Can now re-use r0 and r1

• Later retrieve values in any register you like: pop {r0, r2}

• Can load from the stack without moving sp

• Not popping all pushed values will crash the program

08 June 2023 13/32

Institute of Information Science, Academia Sinica

The stack

• Often data does not fit in registers
• Solution: push intermediate values to the stack (changes sp)
• push {r0, r1}

• Can now re-use r0 and r1

• Later retrieve values in any register you like: pop {r0, r2}

• Can load from the stack without moving sp

• Not popping all pushed values will crash the program

08 June 2023 13/32

Institute of Information Science, Academia Sinica

The stack

• Often data does not fit in registers
• Solution: push intermediate values to the stack (changes sp)
• push {r0, r1}

• Can now re-use r0 and r1

• Later retrieve values in any register you like: pop {r0, r2}

• Can load from the stack without moving sp

• Not popping all pushed values will crash the program

08 June 2023 13/32

Institute of Information Science, Academia Sinica

Memory

• Stack is nice for intermediate values, but not for constants or lookup tables
• ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
• Can directly insert words and bytes as ‘data’

. data
somedata :

. word 0x01234567 , 0xfedcba98

. byte 0x2a , 0x25
. tex t

//continue with code

• Ends up somewhere in RAM, need a label to access it
• For n bytes of uninitialized memory, use a label and .skip n

• For n bytes of 0-initialized data, use .lcomm somelabel, n

• For global constants in ROM/flash, use .section .rodata

08 June 2023 14/32

Institute of Information Science, Academia Sinica

Memory

• Stack is nice for intermediate values, but not for constants or lookup tables
• ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
• Can directly insert words and bytes as ‘data’

. data
somedata :

. word 0x01234567 , 0xfedcba98

. byte 0x2a , 0x25
. tex t

//continue with code

• Ends up somewhere in RAM, need a label to access it
• For n bytes of uninitialized memory, use a label and .skip n

• For n bytes of 0-initialized data, use .lcomm somelabel, n

• For global constants in ROM/flash, use .section .rodata

08 June 2023 14/32

Institute of Information Science, Academia Sinica

Memory

• Stack is nice for intermediate values, but not for constants or lookup tables
• ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
• Can directly insert words and bytes as ‘data’

. data
somedata :

. word 0x01234567 , 0xfedcba98

. byte 0x2a , 0x25
. tex t

//continue with code

• Ends up somewhere in RAM, need a label to access it
• For n bytes of uninitialized memory, use a label and .skip n

• For n bytes of 0-initialized data, use .lcomm somelabel, n

• For global constants in ROM/flash, use .section .rodata

08 June 2023 14/32

Institute of Information Science, Academia Sinica

Memory

• Stack is nice for intermediate values, but not for constants or lookup tables
• ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
• Can directly insert words and bytes as ‘data’

. data
somedata :

. word 0x01234567 , 0xfedcba98

. byte 0x2a , 0x25
. tex t

//continue with code

• Ends up somewhere in RAM, need a label to access it
• For n bytes of uninitialized memory, use a label and .skip n

• For n bytes of 0-initialized data, use .lcomm somelabel, n

• For global constants in ROM/flash, use .section .rodata

08 June 2023 14/32

Institute of Information Science, Academia Sinica

Memory

• Stack is nice for intermediate values, but not for constants or lookup tables
• ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
• Can directly insert words and bytes as ‘data’

. data
somedata :

. word 0x01234567 , 0xfedcba98

. byte 0x2a , 0x25
. tex t

//continue with code

• Ends up somewhere in RAM, need a label to access it
• For n bytes of uninitialized memory, use a label and .skip n

• For n bytes of 0-initialized data, use .lcomm somelabel, n

• For global constants in ROM/flash, use .section .rodata

08 June 2023 14/32

Institute of Information Science, Academia Sinica

Memory

• Stack is nice for intermediate values, but not for constants or lookup tables
• ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
• Can directly insert words and bytes as ‘data’

. data
somedata :

. word 0x01234567 , 0xfedcba98

. byte 0x2a , 0x25
. tex t

//continue with code

• Ends up somewhere in RAM, need a label to access it
• For n bytes of uninitialized memory, use a label and .skip n

• For n bytes of 0-initialized data, use .lcomm somelabel, n

• For global constants in ROM/flash, use .section .rodata

08 June 2023 14/32

Institute of Information Science, Academia Sinica

Using memory: ldr/str

• adr r0, somelabel to get the address in a register
• ldr/str r1, [r0] loads/stores a value
• ldr r1, [r0, #4] loads from r0+4 (bytes)
• ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4
• ldr r1, [r0], #4 loads from r0 and increments r0 by 4
• ldr r1, [r0, r2] loads from r0+r2, cannot increment
• ldr r1, [r0, r2, lsl #2] is possible

• if r2 was a byte-offset, it’s now used as word-offset

• str also has these variants

08 June 2023 15/32

Institute of Information Science, Academia Sinica

Using memory: ldr/str

• adr r0, somelabel to get the address in a register
• ldr/str r1, [r0] loads/stores a value
• ldr r1, [r0, #4] loads from r0+4 (bytes)
• ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4
• ldr r1, [r0], #4 loads from r0 and increments r0 by 4
• ldr r1, [r0, r2] loads from r0+r2, cannot increment
• ldr r1, [r0, r2, lsl #2] is possible

• if r2 was a byte-offset, it’s now used as word-offset

• str also has these variants

08 June 2023 15/32

Institute of Information Science, Academia Sinica

Using memory: ldr/str

• adr r0, somelabel to get the address in a register
• ldr/str r1, [r0] loads/stores a value
• ldr r1, [r0, #4] loads from r0+4 (bytes)
• ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4
• ldr r1, [r0], #4 loads from r0 and increments r0 by 4
• ldr r1, [r0, r2] loads from r0+r2, cannot increment
• ldr r1, [r0, r2, lsl #2] is possible

• if r2 was a byte-offset, it’s now used as word-offset

• str also has these variants

08 June 2023 15/32

Institute of Information Science, Academia Sinica

Using memory: ldr/str

• adr r0, somelabel to get the address in a register
• ldr/str r1, [r0] loads/stores a value
• ldr r1, [r0, #4] loads from r0+4 (bytes)
• ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4
• ldr r1, [r0], #4 loads from r0 and increments r0 by 4
• ldr r1, [r0, r2] loads from r0+r2, cannot increment
• ldr r1, [r0, r2, lsl #2] is possible

• if r2 was a byte-offset, it’s now used as word-offset

• str also has these variants

08 June 2023 15/32

Institute of Information Science, Academia Sinica

Using memory: ldr/str

• adr r0, somelabel to get the address in a register
• ldr/str r1, [r0] loads/stores a value
• ldr r1, [r0, #4] loads from r0+4 (bytes)
• ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4
• ldr r1, [r0], #4 loads from r0 and increments r0 by 4
• ldr r1, [r0, r2] loads from r0+r2, cannot increment
• ldr r1, [r0, r2, lsl #2] is possible

• if r2 was a byte-offset, it’s now used as word-offset

• str also has these variants

08 June 2023 15/32

Institute of Information Science, Academia Sinica

Using memory: ldr/str

• adr r0, somelabel to get the address in a register
• ldr/str r1, [r0] loads/stores a value
• ldr r1, [r0, #4] loads from r0+4 (bytes)
• ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4
• ldr r1, [r0], #4 loads from r0 and increments r0 by 4
• ldr r1, [r0, r2] loads from r0+r2, cannot increment
• ldr r1, [r0, r2, lsl #2] is possible

• if r2 was a byte-offset, it’s now used as word-offset

• str also has these variants

08 June 2023 15/32

Institute of Information Science, Academia Sinica

Using memory: ldrd/strd/ldm/stm

• ldrd/strd r0, r1, [r2] loads/stores two consecutive words from r2
• Also as ldrd/strd r0, r1, [r2, #4] and ldrd/strd r0, r1, [r2], #4

• ldm/stm r0, {r1,r2,r5} loads/stores multiple from consecutive memory locations
• ldm/stm r0!, {r1,r2,r5} [...] and increments r0
• push {r0,r1} == stmdb sp!, {r0,r1}

• ‘store multiple decrement before’

• Caution: ldrd/strd/ldm/stm require the address to be aligned to 4 bytes

08 June 2023 16/32

Institute of Information Science, Academia Sinica

Using memory: ldrd/strd/ldm/stm

• ldrd/strd r0, r1, [r2] loads/stores two consecutive words from r2
• Also as ldrd/strd r0, r1, [r2, #4] and ldrd/strd r0, r1, [r2], #4

• ldm/stm r0, {r1,r2,r5} loads/stores multiple from consecutive memory locations
• ldm/stm r0!, {r1,r2,r5} [...] and increments r0
• push {r0,r1} == stmdb sp!, {r0,r1}

• ‘store multiple decrement before’

• Caution: ldrd/strd/ldm/stm require the address to be aligned to 4 bytes

08 June 2023 16/32

Institute of Information Science, Academia Sinica

Using memory: ldrd/strd/ldm/stm

• ldrd/strd r0, r1, [r2] loads/stores two consecutive words from r2
• Also as ldrd/strd r0, r1, [r2, #4] and ldrd/strd r0, r1, [r2], #4

• ldm/stm r0, {r1,r2,r5} loads/stores multiple from consecutive memory locations
• ldm/stm r0!, {r1,r2,r5} [...] and increments r0
• push {r0,r1} == stmdb sp!, {r0,r1}

• ‘store multiple decrement before’

• Caution: ldrd/strd/ldm/stm require the address to be aligned to 4 bytes

08 June 2023 16/32

Institute of Information Science, Academia Sinica

Using memory: ldrd/strd/ldm/stm

• ldrd/strd r0, r1, [r2] loads/stores two consecutive words from r2
• Also as ldrd/strd r0, r1, [r2, #4] and ldrd/strd r0, r1, [r2], #4

• ldm/stm r0, {r1,r2,r5} loads/stores multiple from consecutive memory locations
• ldm/stm r0!, {r1,r2,r5} [...] and increments r0
• push {r0,r1} == stmdb sp!, {r0,r1}

• ‘store multiple decrement before’

• Caution: ldrd/strd/ldm/stm require the address to be aligned to 4 bytes

08 June 2023 16/32

Institute of Information Science, Academia Sinica

Using memory: Pipelining

• A single ldr instruction take 2 cycles (when not stalled)
• Two consecutive ldr instructions take 3 cycles
• N consecutive ldr instructions take N+ 1 cycles
• str usually takes one cycle; does not pipeline
• ldrd/strd/ldm/stm do not pipeline together

• ldrd/strd take 3 cycles
• ldm/stm take N+ 1 cycles

• There is some penalty for unaligned addresses for ldr/str
• This may depend on your actual M4 core

• For more details look at https://developer.arm.com/documentation/ddi0439/b/
Programmers-Model/Instruction-set-summary/Load-store-timings

08 June 2023 17/32

https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings

Institute of Information Science, Academia Sinica

Using memory: Pipelining

• A single ldr instruction take 2 cycles (when not stalled)
• Two consecutive ldr instructions take 3 cycles
• N consecutive ldr instructions take N+ 1 cycles
• str usually takes one cycle; does not pipeline
• ldrd/strd/ldm/stm do not pipeline together

• ldrd/strd take 3 cycles
• ldm/stm take N+ 1 cycles

• There is some penalty for unaligned addresses for ldr/str
• This may depend on your actual M4 core

• For more details look at https://developer.arm.com/documentation/ddi0439/b/
Programmers-Model/Instruction-set-summary/Load-store-timings

08 June 2023 17/32

https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings

Institute of Information Science, Academia Sinica

Using memory: Pipelining

• A single ldr instruction take 2 cycles (when not stalled)
• Two consecutive ldr instructions take 3 cycles
• N consecutive ldr instructions take N+ 1 cycles
• str usually takes one cycle; does not pipeline
• ldrd/strd/ldm/stm do not pipeline together

• ldrd/strd take 3 cycles
• ldm/stm take N+ 1 cycles

• There is some penalty for unaligned addresses for ldr/str
• This may depend on your actual M4 core

• For more details look at https://developer.arm.com/documentation/ddi0439/b/
Programmers-Model/Instruction-set-summary/Load-store-timings

08 June 2023 17/32

https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings

Institute of Information Science, Academia Sinica

Using memory: Pipelining

• A single ldr instruction take 2 cycles (when not stalled)
• Two consecutive ldr instructions take 3 cycles
• N consecutive ldr instructions take N+ 1 cycles
• str usually takes one cycle; does not pipeline
• ldrd/strd/ldm/stm do not pipeline together

• ldrd/strd take 3 cycles
• ldm/stm take N+ 1 cycles

• There is some penalty for unaligned addresses for ldr/str
• This may depend on your actual M4 core

• For more details look at https://developer.arm.com/documentation/ddi0439/b/
Programmers-Model/Instruction-set-summary/Load-store-timings

08 June 2023 17/32

https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings

Institute of Information Science, Academia Sinica

Subroutines

• lr keeps track of ‘return address’
• Branch with link (bl) automatically sets

lr

• Some performance overhead due to
branching

somelabel :
add r0 , r 1
add r0 , r1 , ror #2
add r0 , r1 , ror #4
bx l r

main :
bl somelabel
mov r4 , r0
mov r0 , r2
mov r1 , r3
bl somelabel
. . .

08 June 2023 18/32

Institute of Information Science, Academia Sinica

Subroutines

• lr keeps track of ‘return address’
• Branch with link (bl) automatically sets

lr

• Some performance overhead due to
branching

somelabel :
add r0 , r 1
add r0 , r1 , ror #2
add r0 , r1 , ror #4
bx l r

main :
bl somelabel
mov r4 , r0
mov r0 , r2
mov r1 , r3
bl somelabel
. . .

08 June 2023 18/32

Institute of Information Science, Academia Sinica

Application Binary Interface (ABI)

• Agreement on how to deal with parameters and return values

• If it fits, parameters in r0-r3

• Otherwise, a part in r0-r3 and the rest on the stack
• Return value in r0

• The callee(!) should preserve r4-r11 if it overwrites the
• r12 is a scratch register (no need to preserve)
• Important when calling your assembly from, e.g., C

• For private subroutines: can ignore this ABI

08 June 2023 19/32

Institute of Information Science, Academia Sinica

Application Binary Interface (ABI)

• Agreement on how to deal with parameters and return values

• If it fits, parameters in r0-r3

• Otherwise, a part in r0-r3 and the rest on the stack
• Return value in r0

• The callee(!) should preserve r4-r11 if it overwrites the
• r12 is a scratch register (no need to preserve)
• Important when calling your assembly from, e.g., C

• For private subroutines: can ignore this ABI

08 June 2023 19/32

Institute of Information Science, Academia Sinica

Application Binary Interface (ABI)

• Agreement on how to deal with parameters and return values

• If it fits, parameters in r0-r3

• Otherwise, a part in r0-r3 and the rest on the stack
• Return value in r0

• The callee(!) should preserve r4-r11 if it overwrites the
• r12 is a scratch register (no need to preserve)
• Important when calling your assembly from, e.g., C

• For private subroutines: can ignore this ABI

08 June 2023 19/32

Institute of Information Science, Academia Sinica

Application Binary Interface (ABI)

• Agreement on how to deal with parameters and return values

• If it fits, parameters in r0-r3

• Otherwise, a part in r0-r3 and the rest on the stack
• Return value in r0

• The callee(!) should preserve r4-r11 if it overwrites the
• r12 is a scratch register (no need to preserve)
• Important when calling your assembly from, e.g., C

• For private subroutines: can ignore this ABI

08 June 2023 19/32

Institute of Information Science, Academia Sinica

Application Binary Interface (ABI)

• Agreement on how to deal with parameters and return values

• If it fits, parameters in r0-r3

• Otherwise, a part in r0-r3 and the rest on the stack
• Return value in r0

• The callee(!) should preserve r4-r11 if it overwrites the
• r12 is a scratch register (no need to preserve)
• Important when calling your assembly from, e.g., C

• For private subroutines: can ignore this ABI

08 June 2023 19/32

Institute of Information Science, Academia Sinica

Application Binary Interface (ABI)

• Agreement on how to deal with parameters and return values

• If it fits, parameters in r0-r3

• Otherwise, a part in r0-r3 and the rest on the stack
• Return value in r0

• The callee(!) should preserve r4-r11 if it overwrites the
• r12 is a scratch register (no need to preserve)
• Important when calling your assembly from, e.g., C

• For private subroutines: can ignore this ABI

08 June 2023 19/32

Institute of Information Science, Academia Sinica

Architecture Reference Manual

• Large PDF that includes all of this, and more
• Available online: https://developer.arm.com/documentation/ddi0403/latest/

• See Chapter A7 for instruction listings and descriptions

08 June 2023 20/32

https://developer.arm.com/documentation/ddi0403/latest/

Institute of Information Science, Academia Sinica

Architecture Reference Manual

08 June 2023 21/32

Institute of Information Science, Academia Sinica

Architecture Reference Manual

08 June 2023 22/32

Institute of Information Science, Academia Sinica

Multiplications

• The M4 has numerous very powerful multiplication instructions
• They all take 1 cycle
• Most of them are only available in Armv7E-M, not Armv7-M

08 June 2023 23/32

Institute of Information Science, Academia Sinica

Multiplications (2)

08 June 2023 24/32

Institute of Information Science, Academia Sinica

Multiplications (3)

08 June 2023 25/32

Institute of Information Science, Academia Sinica

Multiplications: mul/mla/mls

• mul r0, r1, r2
• Computes r1 · r2 mod 232 and writes it to r0

• mla r0, r1, r2
• Computes r1 · r2 mod 232 and adds it to r0

• mls r0, r1, r2
• Computes r1 · r2 mod 232 and subtracts it from r0

• As only the lower 32 bits are computed, there is no difference for signed/unsigned
08 June 2023 26/32

Institute of Information Science, Academia Sinica

Multiplications: mul/mla/mls

• mul r0, r1, r2
• Computes r1 · r2 mod 232 and writes it to r0

• mla r0, r1, r2
• Computes r1 · r2 mod 232 and adds it to r0

• mls r0, r1, r2
• Computes r1 · r2 mod 232 and subtracts it from r0

• As only the lower 32 bits are computed, there is no difference for signed/unsigned
08 June 2023 26/32

Institute of Information Science, Academia Sinica

Multiplications: mul/mla/mls

• mul r0, r1, r2
• Computes r1 · r2 mod 232 and writes it to r0

• mla r0, r1, r2
• Computes r1 · r2 mod 232 and adds it to r0

• mls r0, r1, r2
• Computes r1 · r2 mod 232 and subtracts it from r0

• As only the lower 32 bits are computed, there is no difference for signed/unsigned
08 June 2023 26/32

Institute of Information Science, Academia Sinica

Multiplications: smull/smlal

• smull r0, r1, r2, r3
• Computes r2 · r3 and places the lower 32 bits in r0 and the higher 32 bits in r1
• smull for signed multiplication, umull for unsigned multiplication

• smlal r0, r1, r2, r3
• Computes r2 · r3 and adds the 64-bit product to r0, r1
• smlal for signed multiplication, umlal for unsigned multiplication

08 June 2023 27/32

Institute of Information Science, Academia Sinica

Multiplications: smull/smlal

• smull r0, r1, r2, r3
• Computes r2 · r3 and places the lower 32 bits in r0 and the higher 32 bits in r1
• smull for signed multiplication, umull for unsigned multiplication

• smlal r0, r1, r2, r3
• Computes r2 · r3 and adds the 64-bit product to r0, r1
• smlal for signed multiplication, umlal for unsigned multiplication

08 June 2023 27/32

Institute of Information Science, Academia Sinica

Multiplications: More multiplications

08 June 2023 28/32

Institute of Information Science, Academia Sinica

Multiplications: More multiplications (2)

• smulbb r0, r1, r2
• Takes the lower 16 bits of r1 and r2, computes 32-bit signed product
• Similarly smulbt, smultb, smultt (t for upper 16 bits)

• smuad r0, r1, r2
• Multiplies lower half of r1 with lower half of r2
• Multiplies upper half of r1 with upper half of r2
• Adds 32-bit products
• smuadx computes Lower(r1)·Upper(r2) + Upper(r1)·Lower(r2)

• smulwb r0, r1, r2
• Multiplies lower half of r2 with full r1 → 48-bit product
• Writes upper 32 bit to r0 (lower 16 bit discarded)
• smulwt uses the upper half of r2 instead

• ...

08 June 2023 29/32

Institute of Information Science, Academia Sinica

Multiplications: More multiplications (2)

• smulbb r0, r1, r2
• Takes the lower 16 bits of r1 and r2, computes 32-bit signed product
• Similarly smulbt, smultb, smultt (t for upper 16 bits)

• smuad r0, r1, r2
• Multiplies lower half of r1 with lower half of r2
• Multiplies upper half of r1 with upper half of r2
• Adds 32-bit products
• smuadx computes Lower(r1)·Upper(r2) + Upper(r1)·Lower(r2)

• smulwb r0, r1, r2
• Multiplies lower half of r2 with full r1 → 48-bit product
• Writes upper 32 bit to r0 (lower 16 bit discarded)
• smulwt uses the upper half of r2 instead

• ...

08 June 2023 29/32

Institute of Information Science, Academia Sinica

Multiplications: More multiplications (2)

• smulbb r0, r1, r2
• Takes the lower 16 bits of r1 and r2, computes 32-bit signed product
• Similarly smulbt, smultb, smultt (t for upper 16 bits)

• smuad r0, r1, r2
• Multiplies lower half of r1 with lower half of r2
• Multiplies upper half of r1 with upper half of r2
• Adds 32-bit products
• smuadx computes Lower(r1)·Upper(r2) + Upper(r1)·Lower(r2)

• smulwb r0, r1, r2
• Multiplies lower half of r2 with full r1 → 48-bit product
• Writes upper 32 bit to r0 (lower 16 bit discarded)
• smulwt uses the upper half of r2 instead

• ...

08 June 2023 29/32

Institute of Information Science, Academia Sinica

Multiplications: More multiplications (3)

08 June 2023 30/32

Institute of Information Science, Academia Sinica

Multiplications: More multiplications (4)

• smlabb/smlabt/smlatb/smlatt
• Same as smulbb/smulbt/smultb/smultt, but with 32-bit accumulation

• smlalbb/smlalbt/smlaltb/smlaltt
• Same as smlabb/smulbt/smultb/smultt, but with 64-bit accumulation

• smlad/smladx
• Same as smuad/smuadx, but with 32-bit accumulation

• smlawb/smlawt
• Same as smulwb/smulwt, but with 32-bit accumulation

• ...

08 June 2023 31/32

Institute of Information Science, Academia Sinica

Multiplications: More multiplications (4)

• smlabb/smlabt/smlatb/smlatt
• Same as smulbb/smulbt/smultb/smultt, but with 32-bit accumulation

• smlalbb/smlalbt/smlaltb/smlaltt
• Same as smlabb/smulbt/smultb/smultt, but with 64-bit accumulation

• smlad/smladx
• Same as smuad/smuadx, but with 32-bit accumulation

• smlawb/smlawt
• Same as smulwb/smulwt, but with 32-bit accumulation

• ...

08 June 2023 31/32

Institute of Information Science, Academia Sinica

Multiplications: More multiplications (4)

• smlabb/smlabt/smlatb/smlatt
• Same as smulbb/smulbt/smultb/smultt, but with 32-bit accumulation

• smlalbb/smlalbt/smlaltb/smlaltt
• Same as smlabb/smulbt/smultb/smultt, but with 64-bit accumulation

• smlad/smladx
• Same as smuad/smuadx, but with 32-bit accumulation

• smlawb/smlawt
• Same as smulwb/smulwt, but with 32-bit accumulation

• ...

08 June 2023 31/32

Institute of Information Science, Academia Sinica

Multiplications: More multiplications (4)

• smlabb/smlabt/smlatb/smlatt
• Same as smulbb/smulbt/smultb/smultt, but with 32-bit accumulation

• smlalbb/smlalbt/smlaltb/smlaltt
• Same as smlabb/smulbt/smultb/smultt, but with 64-bit accumulation

• smlad/smladx
• Same as smuad/smuadx, but with 32-bit accumulation

• smlawb/smlawt
• Same as smulwb/smulwt, but with 32-bit accumulation

• ...

08 June 2023 31/32

Institute of Information Science, Academia Sinica

Floating Point Unit — More Useful as Cache
Only Single Precision, Not Much Computation Power

A majority of ARM Cortex-M4 microcontrollers have a floating point unit (“M4F”).

• Handles 32-bit “single-precision” (6–7 significant digits) floating point numbers
• Can compute one multiply-accumulate in one cycle
• Affect its own flags, which must be moved into regular flags register for use
• Has 32-bit floating point registers (FPRs) S0, S1, …, S31.

• FP registers Sx can serve as temporary storage for frequently used variables;
• Moving data between General Purpose Registers (GPRs) and FPR’s is one cycle each with
the vmov instruction

• Loading data directly into FPRs from memory has the same latency as loading into GPRs,
with the vldr and vldm instructions

• Can put counters directly in FPRs

08 June 2023 32/32

Institute of Information Science, Academia Sinica

Floating Point Unit — More Useful as Cache
Only Single Precision, Not Much Computation Power

A majority of ARM Cortex-M4 microcontrollers have a floating point unit (“M4F”).

• Handles 32-bit “single-precision” (6–7 significant digits) floating point numbers
• Can compute one multiply-accumulate in one cycle
• Affect its own flags, which must be moved into regular flags register for use
• Has 32-bit floating point registers (FPRs) S0, S1, …, S31.

• FP registers Sx can serve as temporary storage for frequently used variables;
• Moving data between General Purpose Registers (GPRs) and FPR’s is one cycle each with
the vmov instruction

• Loading data directly into FPRs from memory has the same latency as loading into GPRs,
with the vldr and vldm instructions

• Can put counters directly in FPRs

08 June 2023 32/32

