Introduction to the Cortex-M&

Matthias J. Kannwischer and Bo-Yin Yang
Academia Sinica, Taipei, Taiwan
matthias@kannwischer.eu

08 June 2023, Summer School on real-world crypto and privacy,
Vodice, Croatia

mailto:matthias@kannwischer.eu

Recap: why program in assembly

- Compilers are useful, but not that ‘good’
 Assembly gives precise control

S,

Institute of Information Science, Academia Sinica

1/32

Recap: why program in assembly

- Compilers are useful, but not that ‘good’
 Assembly gives precise control

+ Can be critical for a secure implementation!

Institute of Information Science, Academia Sinica

1/32

Recap: why program in assembly

- Compilers are useful, but not that ‘good’
 Assembly gives precise control

+ Can be critical for a secure implementation!

- Constant-time
« Correct order of instructions with masking

Institute of Information Science, Academia Sinica

1/32

Recap: why program in assembly

- Compilers are useful, but not that ‘good’
 Assembly gives precise control

+ Can be critical for a secure implementation!

- Constant-time
« Correct order of instructions with masking

« Can be critical for a fast implementation!

Institute of Information Science, Academia Sinica

1/32

Our platform: Arm

« Arm company designs CPUs, does not build them
« Market leader for mobile devices, embedded systems

« Armv7E-M architecture
« Cortex-M4 implements this architecture
« Released in 2010, widely deployed

Institute of Information Science, Academia Sinica

2/32

S,

Our platform: Arm

« Arm company designs CPUs, does not build them
« Market leader for mobile devices, embedded systems

Armv7E-M architecture
Cortex-M4 implements this architecture

Released in 2010, widely deployed

STM32F407VGT6
« Cortex-M4 + peripherals

1024 KB flash
192 KB SRAM
168 MHz CPU

Institute of Information Science, Academia Sinica 232

Pipeline

« Cortex-M4 has pipelined execution

Institute of Information Science, Academia Sinica 3/32

Pipeline

« Cortex-M4 has pipelined execution
- 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch H Decode H Execute \
Instruction 2 \ Fetch H Decode H Execute \
Instruction 3 ‘ Fetch H Decode H Execute

Institute of Information Science, Academia Sinica 3/32

Pipeline

« Cortex-M4 has pipelined execution
- 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch H Decode H Execute \
Instruction 2 \ Fetch H Decode H Execute \
Instruction 3 ‘ Fetch H Decode H Execute

« Branching breaks this

- But remedied by branch prediction + speculative execution

Institute of Information Science, Academia Sinica 3/32

Pipeline

« Cortex-M4 has pipelined execution
- 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch H Decode H Execute \
Instruction 2 \ Fetch H Decode H Execute \
Instruction 3 ‘ Fetch H Decode H Execute

« Branching breaks this
- But remedied by branch prediction + speculative execution

« Execute happens in one cycle: dependencies do not cause stalls

Institute of Information Science, Academia Sinica 3/32

Registers

* 16 registers: r0-r15

Institute of Information Science, Academia Sinica 432

Registers

* 16 registers: r0-r15
« Some special registers

+ r13: sp (stack pointer)
+ ri14: 1r (link register)
* r15: pc (program counter)

Institute of Information Science, Academia Sinica 432

Registers

* 16 registers: r0-r15
« Some special registers

+ r13: sp (stack pointer)
+ ri14: 1r (link register)
* r15: pc (program counter)

« r0-r12 are general purpose and can be freely used
 r14 can also be freely used after being saved to the stack

>,

Institute of Information Science, Academia Sinica

4[32

Instructions

* Format: Instr Rd, Rn(, Rm)

Institute of Information Science, Academia Sinica 5/32

Instructions

* Format: Instr Rd, Rn(, Rm)
* mov r0, ri(equivalenttouint32_t r0 = ri;)

Institute of Information Science, Academia Sinica

5/32

Instructions

* Format: Instr Rd, Rn(, Rm)
* mov r0, ri(equivalenttouint32_t r0 = ri;)
* mov rO, #18

Institute of Information Science, Academia Sinica

5/32

Instructions

* Format: Instr Rd, Rn(, Rm)
* mov r0, ri(equivalenttouint32_t r0 = ri;)
* mov rO, #18
- Sometimes, a constant is too large to fit in an instruction

+ Put constant in memory or construct it
 movw for bottom 16 bits, movt for top 16 bits

Institute of Information Science, Academia Sinica

5/32

Instructions

* Format: Instr Rd, Rn(, Rm)
* mov r0, ri(equivalenttouint32_t r0 = ri;)

* mov rO, #18
- Sometimes, a constant is too large to fit in an instruction
+ Put constant in memory or construct it
 movw for bottom 16 bits, movt for top 16 bits

* add, but also adds, adc, and adcs

Institute of Information Science, Academia Sinica

5/32

Instructions

* Format: Instr Rd, Rn(, Rm)
* mov r0, ri(equivalenttouint32_t r0 = ri;)
* mov rO, #18
- Sometimes, a constant is too large to fit in an instruction

+ Put constant in memory or construct it
 movw for bottom 16 bits, movt for top 16 bits

* add, but also adds, adc, and adcs

-+ By default, flags never get updated!
+ Many instructions have a variant that sets flags by appending s

Institute of Information Science, Academia Sinica

5/32

Instructions

* Format: Instr Rd, Rn(, Rm)
* mov r0, ri(equivalenttouint32_t r0 = ri;)
* mov rO, #18
- Sometimes, a constant is too large to fit in an instruction

+ Put constant in memory or construct it
 movw for bottom 16 bits, movt for top 16 bits

* add, but also adds, adc, and adcs

-+ By default, flags never get updated!
+ Many instructions have a variant that sets flags by appending s

- Bitwise operations: eor, and, orr, mvn, orn, bic

Institute of Information Science, Academia Sinica

5/32

Instructions

* Format: Instr Rd, Rn(, Rm)
* mov r0, ri(equivalenttouint32_t r0 = ri;)

* mov rO, #18
- Sometimes, a constant is too large to fit in an instruction
+ Put constant in memory or construct it
 movw for bottom 16 bits, movt for top 16 bits

* add, but also adds, adc, and adcs

-+ By default, flags never get updated!
+ Many instructions have a variant that sets flags by appending s

- Bitwise operations: eor, and, orr, mvn, orn, bic

+ Shifts/rotates: ror, 1s1, 1sr, asr

Institute of Information Science, Academia Sinica

5/32

Instructions

* Format: Instr Rd, Rn(, Rm)
* mov r0, ri(equivalenttouint32_t r0 = ri;)

* mov rO, #18

- Sometimes, a constant is too large to fit in an instruction
+ Put constant in memory or construct it
 movw for bottom 16 bits, movt for top 16 bits

* add, but also adds, adc, and adcs

-+ By default, flags never get updated!
+ Many instructions have a variant that sets flags by appending s

- Bitwise operations: eor, and, orr, mvn, orn, bic
+ Shifts/rotates: ror, 1s1, 1sr, asr
« All have variants with registers as operands and with a constant (‘immediate’)

Institute of Information Science, Academia Sinica

5/32

Combined barrel shifter

« Distinctive feature of ARM architecture
- Every Rm operand goes through barrel shifter
 Possible to do this: eor r0, rl, r2, 1sl #2

S,

Institute of Information Science, Academia Sinica 6/32

Combined barrel shifter

« Distinctive feature of ARM architecture
- Every Rm operand goes through barrel shifter
 Possible to do this: eor r0, rl, r2, 1sl #2

« Two instructions for the price of one, only costs 1 cycle

Institute of Information Science, Academia Sinica

6/32

Combined barrel shifter

« Distinctive feature of ARM architecture
- Every Rm operand goes through barrel shifter
 Possible to do this: eor r0, rl, r2, 1sl #2

« Two instructions for the price of one, only costs 1 cycle

+ Optimized code uses this all the time
 Possible with most arithmetic instructions

Institute of Information Science, Academia Sinica

6/32

Barrel shifter example

Example:

mov r0, #42
mov r1, #37
ror r1, r1, #1
orr r2, r0, r1
sl r2, r2, #1
eor r0, r2

Institute of Information Science, Academia Sinica 7/32

Example:

mov
mov
ror
orr
lsl
eor

ro,
r1,
r1,
r2,
r2,
ro,

H42
H37
r1, #1
ro, ri
r2, #1
r2

Barrel shifter example

More efficient:

mov r0, #42
mov r1, #37
orr r2, r0, r1, ror #1
eor r0, r0, r2, lIlsl #1

Institute of Information Science, Academia Sinica

7132

Example:

mov
mov
ror
orr
lsl
eor

ro,
r1,
r1,
r2,
r2,
ro,

H42
H37
r1, #1
ro, ri
r2, #1
r2

Barrel shifter example

More efficient:

mov r0, #42
mov r1, #37
orr r2, r0, r1, ror #1
eor r0, r0, r2, lIlsl #1

- Barrel shifter does not update Rm, i.e. r1 and r2!

« Avery common use is as a mask with Rm, asr #31!

Institute of Information Science, Academia Sinica

7132

Branching and labels

« After every 32-bit instruction, pc += 4

« By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

>,

Institute of Information Science, Academia Sinica

8/32

Branching and labels

« After every 32-bit instruction, pc += 4

« By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

 While programming, addresses of instructions are not known

>,

Institute of Information Science, Academia Sinica

8/32

Branching and labels

« After every 32-bit instruction, pc += 4

« By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

 While programming, addresses of instructions are not known
« Solution: define a label and use b to branch to labels

Institute of Information Science, Academia Sinica

8/32

Branching and labels

« After every 32-bit instruction, pc += 4

« By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

 While programming, addresses of instructions are not known
« Solution: define a label and use b to branch to labels
+ Assembler and linker later resolve the address

Institute of Information Science, Academia Sinica

8/32

Branching and labels

After every 32-bit instruction, pc += 4

By writing to the pc, we can jump to arbitrary locations (and continue execution
from there)

While programming, addresses of instructions are not known
Solution: define a label and use b to branch to labels
Assembler and linker later resolve the address *

mov r0, #42
b somelabel
mov r0, #37
somelabel:

Institute of Information Science, Academia Sinica 8/32

Conditional branches

+ How to do a for/while loop?

S,

Institute of Information Science, Academia Sinica

9/32

Conditional branches

+ How to do a for/while loop?
+ Need to do a test and branch depending on the outcome

Institute of Information Science, Academia Sinica

9/32

Conditional branches

+ How to do a for/while loop?
+ Need to do a test and branch depending on the outcome

« cmp 10, ri(rican also be shifted/rotated!)
* cmp rO, #5

Institute of Information Science, Academia Sinica

9/32

Conditional branches

+ How to do a for/while loop?

+ Need to do a test and branch depending on the outcome
« cmp 10, ri(rican also be shifted/rotated!)
* cmp rO, #5

* Really: subtract, set status flags, discard result

Institute of Information Science, Academia Sinica

9/32

Conditional branches

+ How to do a for/while loop?

+ Need to do a test and branch depending on the outcome
« cmp 10, ri(rican also be shifted/rotated!)
* cmp rO, #5

* Really: subtract, set status flags, discard result

Instead of b, use a conditional branch
* beq label (r0 == r1)
* bne label (x0 '= r1)

Institute of Information Science, Academia Sinica 0/32

Conditional branches

+ How to do a for/while loop?
+ Need to do a test and branch depending on the outcome
« cmp r0, ri(rican also be shifted/rotated!)
* cmp rO, #5
* Really: subtract, set status flags, discard result
Instead of b, use a conditional branch
* beq label (r0 == r1)
* bne label (x0 '= r1)
* bhi label (r0 > ri1, unsigned)
* blslabel (r0 <= ri, unsigned)
* bgt label (r0 > ri, signed)
* bge label (r0 >= ri, signed)

Institute of Information Science, Academia Sinica

9/32

Conditional branches

+ How to do a for/while loop?
+ Need to do a test and branch depending on the outcome
« cmp r0, ri(rican also be shifted/rotated!)

* cmp rO, #5

* Really: subtract, set status flags, discard result

* beq label (x0
* bne label (x0
* bhi label (0
« bls label (0
* bgt label (r0
* bge label (r0
« And many more

Instead of b, use a conditional branch

== r1)

1= r1)

> ri1, unsigned)
<= r1, unsigned)
> ri, signed)

>= r1, signed)

Institute of Information Science, Academia Sinica

9/32

Conditional branches (example)

InC: In asm:

uint32_t a, b = 100; mov r0, #0 /] a
mov r1, #100 // b

for (a 0; a <= 50; a++) {
b += a; loop:

} add r1, r0 /] b += a
add ro, #1 [l a++

cmp r0, #50 // compare a and 50
bls loop /] loop if <=

Institute of Information Science, Academia Sinica

10/32

Conditional Execution

« Instructions can be executed conditionally when they are part of an IT block

Institute of Information Science, Academia Sinica

11/32

Conditional Execution

« Instructions can be executed conditionally when they are part of an IT block

« For Example,
cmp r0, #42
ITE eq
addeq r1, r1, r2

subne rl1, rl, r2

« Will add r2 to r1 if r0 is equal to 42; otherwise it will subtract r2 from r1

Institute of Information Science, Academia Sinica

11/32

Conditional Execution (2)

« All instructions will be executed; if condition is not satisfied the result will be
discarded
« Instructions for which the condition is not satisfied act as a nop
- This implies that secret conditions result in constant-time as long as there is no branch
instruction inside of the IT block

« Block can consist of up to four instructions

Institute of Information Science, Academia Sinica

12/32

Conditional Execution (2)

« All instructions will be executed; if condition is not satisfied the result will be
discarded
« Instructions for which the condition is not satisfied act as a nop
- This implies that secret conditions result in constant-time as long as there is no branch
instruction inside of the IT block
« Block can consist of up to four instructions

« First instruction always needs to be in the then (T) branch; for the rest it arbitrary
« Examples: IT, ITT, ITTTT, ITETE
+ The then condition needs to match the condition in the IT instruction
« the else (E) conditions need to be the opposite

Institute of Information Science, Academia Sinica

12/32

The stack

- Often data does not fit in registers

S,

Institute of Information Science, Academia Sinica

13/32

The stack

- Often data does not fit in registers
« Solution: push intermediate values to the stack (changes sp)

S,

Institute of Information Science, Academia Sinica

13/32

The stack

- Often data does not fit in registers
« Solution: push intermediate values to the stack (changes sp)
* push {r0, ri}

Institute of Information Science, Academia Sinica

13/32

The stack

- Often data does not fit in registers

« Solution: push intermediate values to the stack (changes sp)
* push {r0, ri}

« Can now re-use r0 and r1

Institute of Information Science, Academia Sinica

13/32

The stack

- Often data does not fit in registers

« Solution: push intermediate values to the stack (changes sp)
* push {r0, ri}

« Can now re-use r0 and r1

« Later retrieve values in any register you like: pop {r0, r2}

Institute of Information Science, Academia Sinica

13/32

The stack

- Often data does not fit in registers

« Solution: push intermediate values to the stack (changes sp)
* push {r0, ri}

« Can now re-use r0 and r1

« Later retrieve values in any register you like: pop {r0, r2}

+ Can load from the stack without moving sp
 Not popping all pushed values will crash the program

Institute of Information Science, Academia Sinica

13/32

Memory

« Stack is nice for intermediate values, but not for constants or lookup tables

Institute of Information Science, Academia Sinica

14/32

Memory

« Stack is nice for intermediate values, but not for constants or lookup tables
« ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit

S,

Institute of Information Science, Academia Sinica

14/32

Memory

« Stack is nice for intermediate values, but not for constants or lookup tables
« ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
+ Can directly insert words and bytes as ‘data’

.data

somedata:
.word 0x01234567, Oxfedcba98
.byte 0x2a, 0x25

.text
//continue with code

Institute of Information Science, Academia Sinica

14/32

Memory

« Stack is nice for intermediate values, but not for constants or lookup tables
« ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
+ Can directly insert words and bytes as ‘data’
.data
somedata:
.word 0x01234567, Oxfedcba98
.byte 0x2a, 0x25
.text
//continue with code

« Ends up somewhere in RAM, need a label to access it

Institute of Information Science, Academia Sinica

14/32

Memory

« Stack is nice for intermediate values, but not for constants or lookup tables
« ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
+ Can directly insert words and bytes as ‘data’

.data

somedata:
.word 0x01234567, Oxfedcba98
.byte 0x2a, 0x25

.text
//continue with code

« Ends up somewhere in RAM, need a label to access it
« For n bytes of uninitialized memory, use a label and .skip n
+ For n bytes of 0-initialized data, use .1comm somelabel, n

Institute of Information Science, Academia Sinica

14/32

Memory

« Stack is nice for intermediate values, but not for constants or lookup tables
« ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ = 8 bit, ‘nibble’ = 4 bit
+ Can directly insert words and bytes as ‘data’

.data

somedata:
.word 0x01234567, Oxfedcba98
.byte 0x2a, 0x25

.text
//continue with code

« Ends up somewhere in RAM, need a label to access it

« For n bytes of uninitialized memory, use a label and .skip n
+ For n bytes of 0-initialized data, use .1comm somelabel, n

« For global constants in ROM/flash, use .section .rodata

Institute of Information Science, Academia Sinica

14/32

Using memory: 1dr/str

« adr r0, somelabel to get the address in a register

Institute of Information Science, Academia Sinica

15/32

Using memory: 1dr/str

« adr r0, somelabel to get the address in a register
* 1dr/str r1, [r0] loads/stores a value

Institute of Information Science, Academia Sinica

15/32

Using memory: 1dr/str

« adr r0, somelabel to get the address in a register
 ldr/str r1, [r0] loads/stores a value
* 1dr r1, [r0, #4] loads from ro+4 (bytes)

Institute of Information Science, Academia Sinica 15/32

Using memory: 1dr/str

« adr r0, somelabel to get the address in a register

* 1dr/str r1, [r0] loads/stores a value

* 1dr r1, [r0, #4] loads from ro+4 (bytes)

* 1dr r1, [r0, #4]! loads from r0+4 and increments r0 by 4
e 1dr r1, [r0], #4 loadsfrom r0 and increments r0 by 4

Institute of Information Science, Academia Sinica

15/32

* adr

Using memory: 1dr/str

r0, somelabel to get the address in a register

« ldr/str r1, [r0] loads/stores a value

* ldr
* ldr
e ldr
e ldr
* ldr

rl, [r0, #4] loads from ro+4 (bytes)

rl, [r0, #4]! loads from r0+4 and increments r0 by 4
r1, [r0], #4loads from r0and increments ro0 by 4
rl, [r0, r2] loads from r0+r2, cannot increment

rl, [r0, r2, 1sl #2] is possible
if r2 was a byte-offset, it's now used as word-offset

Institute of Information Science, Academia Sinica 15/32

* adr

Using memory: 1dr/str

r0, somelabel to get the address in a register

« ldr/str r1, [r0] loads/stores a value

* ldr
* ldr
e ldr
e ldr
* ldr

rl, [r0, #4] loads from ro+4 (bytes)

rl, [r0, #4]! loads from r0+4 and increments r0 by 4
r1, [r0], #4loads from r0and increments ro0 by 4
rl, [r0, r2] loads from r0+r2, cannot increment

rl, [r0, r2, 1sl #2] is possible
if r2 was a byte-offset, it's now used as word-offset

+ str also has these variants

Institute of Information Science, Academia Sinica 15/32

Using memory: 1drd/strd/ldm/stm

+ 1drd/strd r0, r1, [r2] loads/stores two consecutive words from r2
» Also as 1drd/strd r0, r1l, [r2, #4] and 1drd/strd r0, rl, [r2], #4

Institute of Information Science, Academia Sinica 16/32

Using memory: 1drd/strd/ldm/stm

+ 1drd/strd r0, r1, [r2] loads/stores two consecutive words from r2
» Also as 1drd/strd r0, r1l, [r2, #4] and 1drd/strd r0, rl, [r2], #4

 ldm/stm r0, {r1,r2,r5} loads/stores multiple from consecutive memory locations
+ 1dm/stm r0!, {r1,r2,r5}[..] and increments r0

Institute of Information Science, Academia Sinica 16/32

Using memory: 1drd/strd/ldm/stm

 1drd/strd r0, r1, [r2] loads/stores two consecutive words from r2
» Also as 1drd/strd r0, ril, [r2, #4] and 1drd/strd r0, r1, [r2], #4
+ 1ldm/stm r0, {r1,r2,r5} loads/stores multiple from consecutive memory locations
+ 1dm/stm r0!, {r1,r2,r5}[..] and increments r0
* push {r0,r1} == stmdb sp!, {r0,r1}
- ‘store multiple decrement before’

Institute of Information Science, Academia Sinica

16/32

Using memory: 1drd/strd/ldm/stm

+ 1drd/strd r0, r1, [r2] loads/stores two consecutive words from r2
» Also as 1drd/strd r0, r1l, [r2, #4] and 1drd/strd r0, rl, [r2], #4

+ 1ldm/stm r0, {r1,r2,r5} loads/stores multiple from consecutive memory locations
+ 1dm/stm r0!, {r1,r2,r5}[..] and increments r0
* push {r0,r1} == stmdb sp!, {r0,r1}

« ‘store multiple decrement before’

« Caution: 1drd/strd/1ldm/stm require the address to be aligned to 4 bytes

Institute of Information Science, Academia Sinica

16/32

Using memory: Pipelining

+ Asingle 1dr instruction take 2 cycles (when not stalled)
« Two consecutive 1dr instructions take 3 cycles

>,

Institute of Information Science, Academia Sinica

17/32

https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings

Using memory: Pipelining

+ Asingle 1dr instruction take 2 cycles (when not stalled)
« Two consecutive 1dr instructions take 3 cycles
+ N consecutive 1dr instructions take N + 1 cycles

Institute of Information Science, Academia Sinica 17/32

https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings

Using memory: Pipelining

+ Asingle 1dr instruction take 2 cycles (when not stalled)
« Two consecutive 1dr instructions take 3 cycles

+ N consecutive 1dr instructions take N + 1 cycles

« str usually takes one cycle; does not pipeline

¢ 1drd/strd/1ldm/stm do not pipeline together

+ 1drd/strd take 3 cycles
* 1ldm/stmtake N + 1 cycles

Institute of Information Science, Academia Sinica

17/32

https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings

Using memory: Pipelining

+ Asingle 1dr instruction take 2 cycles (when not stalled)
« Two consecutive 1dr instructions take 3 cycles

+ N consecutive 1dr instructions take N + 1 cycles

« str usually takes one cycle; does not pipeline

¢ 1drd/strd/1ldm/stm do not pipeline together

+ 1drd/strd take 3 cycles
* 1ldm/stmtake N + 1 cycles

+ There is some penalty for unaligned addresses for 1dr/str
 This may depend on your actual M4 core
+ For more details look at https://developer.arm.com/documentation/ddi0439/b/

Programmers-Model/Instruction-set-summary/Load-store-timings

Institute of Information Science, Academia Sinica

17/32

https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings

Subroutines

somelabel:
add r0, r1
add r0, r1, ror #2
add r0, r1, ror #4
* 1r keeps track of ‘return address’ bx Lr

« Branch with link (b1) automatically sets
1r

main:
bl somelabel
mov r4, r0
mov r0, r2
mov r1, r3
bl somelabel

Institute of Information Science, Academia Sinica 18/32

Y,

Subroutines

somelabel:
add r0, r1
add r0, r1, ror #2
add r0, r1, ror #4
* 1r keeps track of ‘return address’ bx Lr

« Branch with link (b1) automatically sets

1r main :

bl somelabel
mov r4, r0
mov r0, r2
mov r1, r3
bl somelabel

« Some performance overhead due to
branching

Institute of Information Science, Academia Sinica

18/32

Application Binary Interface (ABI)

 Agreement on how to deal with parameters and return values

S,

Institute of Information Science, Academia Sinica

19/32

Application Binary Interface (ABI)

 Agreement on how to deal with parameters and return values

« If it fits, parameters in r0-r3

Institute of Information Science, Academia Sinica

19/32

Application Binary Interface (ABI)

 Agreement on how to deal with parameters and return values

« If it fits, parameters in r0-r3
« Otherwise, a part in r0-r3 and the rest on the stack

>,

Institute of Information Science, Academia Sinica

19/32

>,

Application Binary Interface (ABI)

Agreement on how to deal with parameters and return values

If it fits, parameters in r0-r3
Otherwise, a part in r0-r3 and the rest on the stack
Return value in r0

Institute of Information Science, Academia Sinica

19/32

Application Binary Interface (ABI)

 Agreement on how to deal with parameters and return values

« If it fits, parameters in r0-r3
« Otherwise, a part in r0-r3 and the rest on the stack

« Return value in r0

+ The callee(!) should preserve r4-ri1 if it overwrites the
+ r12is a scratch register (no need to preserve)
« Important when calling your assembly from, e.g., C

Institute of Information Science, Academia Sinica

19/32

Application Binary Interface (ABI)

 Agreement on how to deal with parameters and return values

« If it fits, parameters in r0-r3
« Otherwise, a part in r0-r3 and the rest on the stack

« Return value in r0

+ The callee(!) should preserve r4-ri1 if it overwrites the
+ r12is a scratch register (no need to preserve)
« Important when calling your assembly from, e.g., C

« For private subroutines: can ignore this ABI

Institute of Information Science, Academia Sinica

19/32

Architecture Reference Manual

« Large PDF that includes all of this, and more
+ Available online: https://developer.arm.com/documentation/ddi0403/1latest/
+ See Chapter A7 for instruction listings and descriptions

Institute of Information Science, Academia Sinica

20/32

https://developer.arm.com/documentation/ddi0403/latest/

Architecture Reference Manual

A67.3 ADD (immediate)

This instruction adds an immediate value to a register value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb ISA.
ADDS <Rd>, <Rn>, #<imm3> Qutside IT block.
AlD<c> <Rd>,<Rn>,#<im3> Inside IT block.

1514 13121110 9 8 7 6 5 4 3 2
|000ll 1‘1]0 Rn | Rd

imm3

d = UInt(Rd); n = UInt(Rn); setflags = |InITBlock(); imm32 = ZercExtend(imm3, 32);

Encoding T2 All versions of the Thumb ISA.
ADDS <Rdn>, #<immB> Outside IT block.
ADD<c> <Rdn>, #<imm8> Inside IT block.

1514 13121110 9 &8 7 6 5 4 3 2 1 0
|00 l|l 0‘ Rdn ‘ imm§

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

Encoding T3 ARMv7-M
ADD{S}<c>.W <Rd>,<Rn>,#<const>

151413121110 9 &8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

Institute of Information Science, Academia Sinica

Architecture Reference Manual

Assembler syntax

ADD{S}<c><g> {<Rd>,} <Rn>, #<const>
ADW<c><q> {<Rd>,} <Rn>, #<const>

where:

s

<c><g>
<Rd>

<Rn>

<const>

If present, specifies that the instruction updates the flags. Ot
update the flags.

See Siandard assembler syntax fields on page A6-7.
Specifies the destination register. If <Rd> is omitted, this reg

Specifies the register that contains the first operand. If the S|
(SP plus immediate) on page A6-26.1f the PC is specified fc

Specifies the immediate value to be added to the value obta
allowed values is 0-7 for encoding T1, 0-255 for encoding 1
See Modified immediate constants in Thumb instructions o1
allowed values for encoding T3.

Multiplications

« The M4 has numerous very powerful multiplication instructions
 They all take 1 cycle
+ Most of them are only available in Armv7E-M, not Armv7-M

Institute of Information Science, Academia Sinica

23/32

Multiplications (2)

Table A5-28 Multiply, multiply accumulate, and absolute difference operations

op1 op2 Ra Instruction See Variant
000 00 not1111 Multiply Accumulate 'MLA on page A7-289 All
111 Multiply MUL on page A7-302 All
[N Multiply and Subtract MLS on page A7-290 All
001 - not1111 Signed Multiply Accumulate, Halfwords ~ SMLABB, SMLABT, SMLATB. SMLATT ~ vTE-M
on page A7-359
1 Signed Multiply, Halfwords SMULBB, SMULBT, SMULTB, VIE-M
SMULTT on page A7-371
010 O« not1lll Signed Multiply Accumulate Dual SMILAD, SMLADX on page A7-360 VIE-M
1 Signed Dual Multiply Add SMUAD, SMUADX on page A7-370 VIE-M
611 ©x not1111 Signed Multiply Accumulate, Word by SMLAWE, SMLAWT on page A7-364 VIE-M
halfword
111 Signed Multiply, Word by halfword SMULWB, SMULWT on page AT-373 VIE-M
100 Ox not1lll Signed Multiply Subtract Dual SMLSD, SMLSDX on page A7-365 VIE-M
111 Signed Dual Multiply Subtract SMUSD, SMUSDX on page A7-374 VIE-M
101 Ox not1111 Signed Most Significant Word Multiply ~ SMMLA, SMMLAR on page A7-367 VIE-M
Accumulate
111 Signed Most Significant Word Multiply SMMUL, SMMULR on page A7-369 VIE-M
1m0 ek - Signed Most Significant Word Multiply SMMLS, SMMLSR on page A7-368 VIE-M
Subtract
1m0 m1 Unsigned Sum of Absolute Differences, USADAS on page A7-443 VIE-M
Accumulate
not1111 Unsigned Sum of Absolute Differences USADS on page A7-442 VIE-M

Institute of Information Science, Academia Sinica

Multiplications (3)

Table A5-29 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A5-29 Long multiply, long multiply accumulate, and divide operations

opl op2 Instruction See Variant
000 0000 Signed Multiply Long SMULL on page AT-372 All
01 1111 Signed Divide SDIV on page A7-350 All
@16 0000 Unsigned Multiply Long UMULL on page A7-435 All
011 1111 Unsigned Divide UDIV on page A7-426 All
106 o000 Signed Multiply Accumulate Long SMLAL on page A7-361 All
1oxx Signed Multiply Accumulate Long, SMLALBB, SMLALBT, SMLALTB, vIE-M
Halfwords SMLALTT on page A7-362
118x Signed Multiply Accumulate Long Dual ~ SMLALD, SMLALDX on page A7-363 v7E-M
101 118x Signed Multiply Subtract Long Dual SMLSLD, SMLSLDX on page AT-366 vTE-M
110 @280 Unsigned Multiply Accumulate Long UMLAL on page A7-434 All
9110 Unsigned Multiply Accumulate UMAAL on page A7-433 vIE-M

Accumulate Long

Institute of Information Science, Academia Sinica

25/32

Multiplications: mul/mla/mls

Table A4-4 General multiply instructions

Instruction

See Operation (number of bits)

Multiply Accumulate

MILA on page AT-289 32=32+32x32

Multiply and Subtract

MLS on page A7-290 32=32-32=32

Multiply

MUL on page A7-302 32=32x32

* mul rO, rl, r2

« Computes r1 - r2 mod 2*? and writes it to r0

Institute of Information Science, Academia Sinica 26/32

Multiplications: mul/mla/mls

Table A4-4 General multiply instructions

Instruction See Operation (number of bits)

Multiply Accumulate ML4 on page AT-289 32=32+32x 32

Multiply and Subtract ~ MLS on page A7-290 32=32-32x32

Multiply MUL on page A7-302 32=32x32

* mul rO, rl, r2
« Computes r1 - r2 mod 2*? and writes it to r0
* mla rO, rl, r2
« Computes r1 - r2 mod 2*2 and adds it to r0
*mls rO, rl, r2
« Computes r1 - r2 mod 2% and subtracts it from r0

Institute of Information Science, Academia Sinica 26/32

Multiplications: mul/mla/mls

Table A4-4 General multiply instructions

Instruction See

Operation (number of bits)

Multiply Accumulate ~ MLA on page AT-289

32=32+32x32

Multiply and Subtract ~ MLS on page A7-290

32=32-32=32

Multiply MUL on page A7-302

32=32x32

mul rO, rl, r2
« Computes r1 - r2 mod 2*? and writes it to r0

mla rO, rl, r2
« Computes r1 - r2 mod 2*2 and adds it to r0

mls r0O, rl, r2

« Computes r1 - r2 mod 2% and subtracts it from r0

As only the lower 32 bits are computed, there is no difference for signed/uns

Institute of Information Science, Academia Sinica

Multiplications: smull/smlal

Table A4-5 Signed multiply instructions, Armv7-M base architecture

Instruction See Operation (number of bits)

Signed Multiply Accumulate Long ~ SMLAL on page A7-361 64 =64 +32 = 32

Signed Multiply Long SMULL on page A7-372 64=32x32

* smull rO, rl1, r2, r3

« Computes r2 - r3 and places the lower 32 bits in r0 and the higher 32 bits in r1
+ smull for signed multiplication, umull for unsigned multiplication

Institute of Information Science, Academia Sinica 27/32

Multiplications: smull/smlal

Table A4-5 Signed multiply instructions, Armv7-M base architecture

Instruction See Operation (number of bits)

Signed Multiply Accumulate Long ~ SMLAL on page A7-361 64 =64 +32 = 32

Signed Multiply Long SMULL on page A7-372 64=32x32

* smull rO, rl1, r2, r3
« Computes r2 - r3 and places the lower 32 bits in r0 and the higher 32 bits in r1
+ smull for signed multiplication, umull for unsigned multiplication

e smlal rO, r1, r2, r3

« Computes r2 - r3 and adds the 64-bit product to r0, ri1
- smlal for signed multiplication, umlal for unsigned multiplication

Institute of Information Science, Academia Sinica 27/32

Multiplications: More multiplications

Table A4-6 Signed multiply instructions, Armv7-M DSP extension (continued)

Instruction See Operation (number of bits)
Signed most significant Word Multiply SMMUL, SMMULR on page AT-369 32=32x32b
Signed Dual Multiply Add SMUAD, SMUADX on page AT7-370 32=16=16+16=16
Signed Multiply, halfwords SMULBB, SMULBT, SMULTE, 32=16%16
SMULTT on page A7-371
Signed Multiply, word by halfword SMULWB, SMULWT on page AT7-373 32=32x 162
Signed Dual Multiply Subtract SMUSD, SMUSDX on page A7-374 2=16=16-16=16

a. Uses the most significant 32 bits of the 48-bit product. Discards the less significant bits.
b. Uses the most significant 32 bits of the 64-bit product. Discards the less significant bits.

Institute of Information Science, Academia Sinica

28/32

Multiplications: More multiplications (2)

e smulbb r0, rl1, r2

- Takes the lower 16 bits of r1 and r2, computes 32-bit signed product
+ Similarly smulbt, smultb, smultt (t for upper 16 bits)

Institute of Information Science, Academia Sinica

29/32

Multiplications: More multiplications (2)

e smulbb r0, rl1, r2
- Takes the lower 16 bits of r1 and r2, computes 32-bit signed product
+ Similarly smulbt, smultb, smultt (t for upper 16 bits)

* smuad r0, rl, r2

 Multiplies lower half of r1 with lower half of r2

« Multiplies upper half of r1 with upper half of r2

« Adds 32-bit products

* smuadx computes Lower (r1) -Upper (r2) + Upper (rl)-Lower (r2)

Institute of Information Science, Academia Sinica

29/32

Multiplications: More multiplications (2)

e smulbb r0, rl1, r2
- Takes the lower 16 bits of r1 and r2, computes 32-bit signed product
+ Similarly smulbt, smultb, smultt (t for upper 16 bits)
* smuad r0, rl, r2
 Multiplies lower half of r1 with lower half of r2
« Multiplies upper half of r1 with upper half of r2
« Adds 32-bit products
* smuadx computes Lower (r1) -Upper (r2) + Upper (rl)-Lower (r2)
* smulwb r0, rl, r2

« Multiplies lower half of r2 with full r1 — 48-bit product
+ Writes upper 32 bit to r0 (lower 16 bit discarded)
- smulwt uses the upper half of r2 instead

Institute of Information Science, Academia Sinica 29/32

Multiplications: More multiplications (3)

Table A4-6 Signed multiply instructions, Armv7-M DSP extension

Instruction

See

Operation (number of bits)

Signed Multiply Accumulate, halfwords

SMLABB, SMLABT, SMLATB,
SMLATT on page A7-359

32=32+16%16

Signed Multiply Accumulate Dual

SMLAD, SMLADX on page A7-360

32=32+16%16+16% 16

Signed Multiply Accumulate Long,
halfwords

SMLALBB, SMLALBT, SMLALTB,
SMLALTT on page A7-362

64=064+16 % 16

Signed Multiply Accumulate Long Dual

SMLALD, SMLALDX on page A7-363

64=64+16=16+16% 16

Signed Multiply Accumulate, word by
halfword

SMLAWB, SMLAWT on page A7-364

32=32+32x 162

Signed Multiply Subtract Dual

SMLSD, SMLSDX on page A7-365

32=32+16x%16-16%16

Signed Multiply Subtract Long Dual

SMLSLD, SMLSLDX on page A7-366

64=64+16 = 16-16x 16

Signed most significant Word Multiply
Accumulate

SMMLA, SMMLAR on page A7-367

32=32+32x32b

Signed most significant Word Multiply
Subtract

SMMLS, SMMLSR on page A7-368

32=32-32x32b

Institute of Information Science, Academia Sinica

30/32

Multiplications: More multiplications (4)

+ smlabb/smlabt/smlatb/smlatt
+ Same as smulbb/smulbt/smultb/smultt, but with 32-bit accumulation

Institute of Information Science, Academia Sinica

31/32

Multiplications: More multiplications (4)

+ smlabb/smlabt/smlatb/smlatt

+ Same as smulbb/smulbt/smultb/smultt, but with 32-bit accumulation
+ smlalbb/smlalbt/smlaltb/smlaltt

» Same as smlabb/smulbt/smultb/smultt, but with 64-bit accumulation

Institute of Information Science, Academia Sinica

31/32

Multiplications: More multiplications (4)

+ smlabb/smlabt/smlatb/smlatt

+ Same as smulbb/smulbt/smultb/smultt, but with 32-bit accumulation
+ smlalbb/smlalbt/smlaltb/smlaltt

» Same as smlabb/smulbt/smultb/smultt, but with 64-bit accumulation
+ smlad/smladx

+ Same as smuad/smuadx, but with 32-bit accumulation

Institute of Information Science, Academia Sinica

31/32

Multiplications: More multiplications (4)

+ smlabb/smlabt/smlatb/smlatt

+ Same as smulbb/smulbt/smultb/smultt, but with 32-bit accumulation
+ smlalbb/smlalbt/smlaltb/smlaltt

» Same as smlabb/smulbt/smultb/smultt, but with 64-bit accumulation
* smlad/smladx

+ Same as smuad/smuadx, but with 32-bit accumulation
+ smlawb/smlawt

+ Same as smulwb/smulwt, but with 32-bit accumulation

Institute of Information Science, Academia Sinica 3132

Floating Point Unit — More Useful as Cache
Only Single Precision, Not Much Computation Power

A majority of ARM Cortex-M& microcontrollers have a floating point unit (“M4F”).

+ Handles 32-bit “single-precision” (6-7 significant digits) floating point numbers
 Can compute one multiply-accumulate in one cycle
« Affect its own flags, which must be moved into regular flags register for use

Institute of Information Science, Academia Sinica

32/32

Floating Point Unit — More Useful as Cache

Only Single Precision, Not Much Computation Power

A majority of ARM Cortex-M& microcontrollers have a floating point unit (“M4F”).

+ Handles 32-bit “single-precision” (6-7 significant digits) floating point numbers
 Can compute one multiply-accumulate in one cycle
« Affect its own flags, which must be moved into regular flags register for use

+ Has 32-bit floating point registers (FPRs) SO, S1, .., S31.
- FP registers Sx can serve as temporary storage for frequently used variables;
+ Moving data between General Purpose Registers (GPRs) and FPR’s is one cycle each with
the vmov instruction
+ Loading data directly into FPRs from memory has the same latency as loading into GPRs,
with the vldr and v1ldm instructions
« Can put counters directly in FPRs

Institute of Information Science, Academia Sinica

,~

32/32

