
Assignment: Chacha20, Kyber, and
Dilithium

Matthias J. Kannwischer and Bo-Yin Yang
Academia Sinica, Taipei, Taiwan
matthias@kannwischer.eu

08 June 2023, Summer School on real-world crypto and privacy,
Vodice, Croatia

mailto:matthias@kannwischer.eu


Institute of Information Science, Academia Sinica

Assignments

• https://github.com/mkannwischer/m4-tutorial-croatia2023

• Part 1: Chacha20
• Part 2: Dilithium NTT (32-bit Montgomery multiplication)
• Part 3: Kyber NTT (16-bit Plantard multiplication)
• Solutions available on request in a few weeks
• You can easily spend weeks (or years in my case) on each of them
=⇒ Up to you what to work on
=⇒ Suggestion: Start with the Chacha20 quarterround; then Dilithium; then Kyber

08 June 2023 1/18

https://github.com/mkannwischer/m4-tutorial-croatia2023


Institute of Information Science, Academia Sinica

Testing

• We target the Cortex-M4
• Usually: Use a cheap discovery board (e.g., STM32F407-DISCOVERY)
• For getting started: Emulate hardware using qemu

• Very easy to setup; no fiddling with USB cables
• Good enough for functional testing and debugging (can attach gdb)
• Cannot perform benchmarks :(

• Once everything is working in qemu
=⇒ Let me know! We have 26 STM32F407 boards for benchmarking
=⇒ Need to be returned at the end of the tutorial!

08 June 2023 2/18



Institute of Information Science, Academia Sinica

Getting started

• Clone the repository
git clone --recurse-submodules
https://github.com/mkannwischer/m4-tutorial-croatia2023

• Follow setup instructions to setup qemu, arm-none-eabi-gcc, pyserial, and stlink
• Run hello world

cd helloworld
make
make run-qemu

• Run one of the assignments (e.g., Chacha20)
cd chacha20
make
make run-qemu

08 June 2023 3/18



Institute of Information Science, Academia Sinica

Getting started: Real hardware

• Two cables
• Mini-USB for flashing software and power supply
• UART adapter for receiving output from the board

• Connect USB cable to your laptop and board
• Connect white cable of the UART adapter to pin PA2

08 June 2023 4/18



Institute of Information Science, Academia Sinica

Getting started: Real hardware (2)

• Build libopencm3 (lib supporting communication with a large number of M3/M4
microcontrollers)
cd libopencm3
make

• Build binary for target hardware
cd helloworld
make PLATFORM=stm32
=⇒ Results in a binary (bin/stm32f407-test.bin)

• Write binary into the flash memory of the board
st-flash write bin/stm32f407-test.bin 0x8000000

08 June 2023 5/18



Institute of Information Science, Academia Sinica

Getting started: Real hardware (3)

• Receive serial output from the board
Linux: pyserial-miniterm /dev/ttyUSB0 38400
MacOS: pyserial-miniterm /dev/tty.usbserial-0001 38400
(If you have more USB devices connected, change to USB1/USB2 etc)

• Push the black reset button on the board ⇒ should see the same output as on
qemu (now with real cycle counts!)

08 June 2023 6/18



Institute of Information Science, Academia Sinica

Getting started: Chacha20

• You are given the reference implementation of Chacha20
• Test is checking outputs of a single call to chacha20
• Task: Replace (parts of) reference implementation to make it fast
• Steps

• Today: Write quarterround function in assembly
• Later: Merge 4 quarterround functions into a full round
• Later: Implement loop over 20 rounds in assembly

• Hints
• Carefully study the slides on the barrel shifter
• Note that if you just replace a single function, there is a lot of calling overhead and lots
of loads and stores from/to memory. You won’t see good performance until you
complete all 3 steps.

08 June 2023 7/18



Institute of Information Science, Academia Sinica

Chacha20

• Stream-cipher
• Input: key + nonce
• Output: Random-looking byte string of certain size

• 256-bit key, 96-bit nonce, 32-bit counter
• State of 16 32-bit integers
• 20 rounds each consisting of 4 quarterrounds

08 June 2023 8/18



Institute of Information Science, Academia Sinica

Chacha20: quarterround

quarterround(a, b, c, d):
a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;

08 June 2023 9/18



Institute of Information Science, Academia Sinica

Chacha20: Double round

uint32_t x0, ..., x15;

Repeat 10 times
quarterround(&x0, &x4, &x8, &x12);
quarterround(&x1, &x5, &x9, &x13);
quarterround(&x2, &x6, &x10,&x14);
quarterround(&x3, &x7, &x11,&x15);
quarterround(&x0, &x5, &x10,&x15);
quarterround(&x1, &x6, &x11,&x12);
quarterround(&x2, &x7, &x8, &x13);
quarterround(&x3, &x4, &x9, &x14);

08 June 2023 10/18



Institute of Information Science, Academia Sinica

Chacha20: Single-block

• Initialization of the state
• x0, ..., x3: constants 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
(ASCII: expand 32-byte k)

• x4, ..., x11: key
• x12: counter (0 for the first block, 1 for the second, etc.)
• x13, .., x15: nonce

• Perform 20 rounds
• Add initial state to the state (addition modulo 232)
• Produces 64 bytes of output

08 June 2023 11/18



Institute of Information Science, Academia Sinica

NTT Assignment

• Task: Write your your Dilithium and Kyber NTT (Folders: dilithium, kyber)
• Start with Dilithium as it is a little easier
• Follow the steps in the README to run the test
• Implement consecutively

1. Modular multiplication (test_mulmod and mulmod_asm)
2. Butterfly (test_butterfly and butterfly_asm)
3. 1st layer (test_nttlayer1 and nttlayer1_asm)
4. NTT (test_ntt and ntt_asm)

08 June 2023 12/18



Institute of Information Science, Academia Sinica

Tests

• The assignment comes with extensive unit tests!
• When you start it should look at

• test.c
• ref.c
• m4.S

08 June 2023 13/18



Institute of Information Science, Academia Sinica

Hints

• Dilithium prime: 8380417; Kyber prime: 3329
• Dilithium: Represent coefficients as int32_t
• Kyber: Represent coefficients as int16_t

• Dilithium: 8 layer NTT; Kyber: 7 layer NTT
• Dilithium: Use 32-bit signed Montgomery multiplication

• Careful: Need to pre-compute twiddles in Montgomery domain
=⇒ tR mod q with R = 232

• I have done that for you already (twiddles_asm in test.c); but try to understand it
• Kyber: Use Plantard multiplication

• Need to pre-compute tq−1 mod± 22ℓ with ℓ = 16
• Precomputation is already done; see twiddles_asm in test.c

08 June 2023 14/18



Institute of Information Science, Academia Sinica

More hints

• Note that the twiddle factors for the reference implementation are different from
the ones on the assembly implementation

• In general, we would need to be very careful that the additions/subtractions do not
overflowing

• Need to add extra reductions before that happens
• Here: We are lucky and there can be no overflows

• Dilithium: Input at most q→ Output at most 9q < 231
• Kyber: Input at most q→ Output at most 4.5q < 216

08 June 2023 15/18



Institute of Information Science, Academia Sinica

More hints (2)

• 32-bit Signed Montgomery multiplication (R = 232)
smull tl, th, a, b
mul t2, tl, q'
smlal tl, th, t2, q
(Result in th)

• 16-bit Plantard Multiplication by a constant
smulwb r, bq', a
smlabb r, r, q, q2α
(Result in upper half of r; α = 3 for Kyber)

08 June 2023 16/18



Institute of Information Science, Academia Sinica

Next steps

• Benchmark your code on actual hardware
• Perform micro-architectural optimizations

• Pipeline loads
• Minimize memory access by performing multiple NTT layers at once (layer merging)
• Use floating point registers to cache values
• Ensure instruction alignment

• Add final reduction (e.g., Barrett reduction) after the NTT
• Implement inverse NTT
• Implement base multiplication in assembly
• Plug code into a Kyber/Dilithium implementation

08 June 2023 17/18



Institute of Information Science, Academia Sinica

Pointers

• STM32-getting-started: Simple example for getting started on the STM32F407
discovery board (and others)
https://github.com/mkannwischer/stm32-getting-started

• PQM4: Collection of state-of-the-art implementations and unified benchmarking
framework
https://github.com/mupq/pqm4

• M4 Cryptographic Engineering Assignment: Unoptimized code + tests that you can
try to speed-up (or give to students)
Including SHA2, SHA-3/SHAKE, Poly1305, Gimli, ECDH25519, Chacha20, AES
https://github.com/mkannwischer/m4-crypto-eng-assignments

08 June 2023 18/18

https://github.com/mkannwischer/stm32-getting-started
https://github.com/mupq/pqm4
https://github.com/mkannwischer/m4-crypto-eng-assignments

